[1] SIGL R. Introduction to potential theory[M]. Tunbridge Wells:Abacus Press, 1985. [2] STERNBERG W J, SMITH T L. The theory of potential and spherical harmonics[M]. reprinted, Toronto:University of Toronto Press, 1964. [3] HOTINE M. Mathematical geodesy[M]. ESSA Monograph 2, Washington D.C, 1969. [4] BJEHAMMAR A, HǒGSKOLAN K T, SVENSSON L. On the geodetic boundary value problem for a fixed boundary surface-satellite approach[J]. Bull Géod. 1983,57:382-393. [5] ZHANG P V, CHANG You, LESS E S. A comparison of stokes and hotine's approaches to geoid computation[J]. Manuscripta Geodatica, 1992, 17:29-35 [6] HOFMANN-WELLENHOF B, MORITZ H. Physical Geodesy[M]. 2nd ed. New York:Springer Wien, 2006. [7] 李斐, 陈武, 岳建利. GPS在物理大地测量中的应用及GPS边值问题[J]. 测绘学报, 2003, 32(3):198-203. LI Fei, CHEN Wu, YUE Jianli. Applications of GPS in geodesy and GPS boundary value problem[J]. Acta Geodaetica et Cartographic Sinica, 2003, 32(3):198-203. [8] 李斐, 陈武, 岳建利. GPS/重力边值问题的求解及应用[J]. 地球物理学报, 2003, 46(5):595-599. LI Fei, CHEN Wu, YUE Jianli. On solution and application of GPS/gravity boundary value problem[J]. Chinese Journal of Geophysics, 2003, 46(5):595-599. [9] 李斐, 岳建利, 张利明. 应用GPS重力数据确定(似)大地水准面[J]. 地球物理学报, 2005, 48(2):294-298. LI Fei, YUE Jianli, ZHANG Liming. Determination of geoid by GPS/gravity data[J]. Chinese Journal of Geophysics, 2005, 48(2):294-298. [10] 张利明, 李斐, 章传银. GPS/重力边值问题实用公式推导及分析[J]. 地球物理学进展, 2008, 23(6):1746-1750. ZHANG Liming, LI Fei, ZHANG Chuanyin.GPS gravity boundary value problem and its practical formula[J]. Progress in Geophysics, 2008, 23(6):1746-1750. [11] 马健, 魏子卿. 近区地形直接与间接影响的棱柱模型算法[J]. 测绘学报, 2018, 47(11):1429-1436. DOI:10.11947/j.AGCS.2018.20170369. MA Jian, WEI Ziqing. Prism algorithms for the near-zone direct and indirect topographic effects[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1429-1436. DOI:10.11947/j.AGCS.2018.20170369. [12] 马健, 魏子卿. 利用Molodensky理论求解第二大地边值问题[J]. 武汉大学学报(信息科学版), 2019, 44(10):1478-1483. MA Jian, WEI Ziqing. The second geodetic boundary value problem based on Molodensky theory[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1478-1483. [13] 马健, 魏子卿, 任红飞. 确定似大地水准面的Hotine-Helmert边值解算模型[J]. 测绘学报, 2019, 48(2):153-160. DOI:10.11947/j.AGCS.2019.20170594. MA Jian, WEI Ziqing, REN Hongfei. Hotine-Helmert boundary-value calculation model for quasi-geoid determination[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):153-160. DOI:10.11947/j.AGCS.2019.20170594. [14] 魏子卿. 第二大地边值问题[M]. 北京:科学出版社, 2021.6. WEI Ziqing. The second geodetic boundary value problem[M]. Beijing:Science Press, 2021.6. [15] MORITZ H. Advanced physical geodesy[M]. Sammlung Wichmann Neue Folge, Band 13, Tunbridge Wells Kent:Herbert Wichmann Verlag Karlsruhe Abacus Press, 1980. [16] HEISKANEN W A,MORITZ H. Physical Geodesy[M]. San Francisco/London:Freeman and Co.,1967. |