[1] 欧吉坤. 测量平差中不适定问题解的统一表达与选权拟合法[J]. 测绘学报, 2004, 33(4): 283-288. OU Jikun. Uniform expression of solutions of ill-posed problems in surveying adjustment and the fitting method by selection of the parameter weights[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(4): 283-288. [2] 朱建军, 田玉淼, 陶肖静. 带准则参数的平差准则及其统一与解算[J]. 测绘学报, 2012, 41(1): 8-13. ZHU Jianjun, TIAN Yumiao, TAO Xiaojing. United expression and solution of adjustment criteria with parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 8-13. [3] KUSCHE J, KLEES R. Regularization of gravity field estimation from satellite gravity gradients[J]. Journal of Geodesy, 2002, 76(6): 359-368. [4] LI Bofeng, SHEN Yunzhong, FENG Yanming. Fast GNSS ambiguity resolution as an ill-posed problem[J]. Journal of Geodesy, 2010, 84(11): 683-698. [5] 王振杰, 欧吉坤, 柳林涛. 单频GPS快速定位中病态问题的解法研究[J]. 测绘学报, 2005,34(3): 196-201. WANG Zhenjie, OU Jikun, LIU Lintao. Investigation onsolutions of ill-conditioned problems in rapid positioning using single frequency GPS receivers[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(3): 196-201. [6] FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. A wavelet decomposition and polynomial fitting-based method for the estimation of time-varying residual motion error in airborne interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 49-59. [7] FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data[J]. Journal of Geodesy, 2018, 92(7): 727-741. [8] WANG Leyang, ZHAO Xiong, GAO Hua. A method for determining the regularization parameter and the relative weight ratio of the seismic slip distribution with multi-source data[J]. Journal of Geodynamics, 2018, 118: 1-10. [9] 刘燕东, 纪晓琳, 孟小红, 等. 稳定正则化参数估计方法及其在盆地基底重力异常反演中的应用[J]. 地球物理学报, 2021, 64(10): 3756-3765. LIU Yandong, JI Xiaolin, MENG Xiaohong, et al. A stable regularization parameter estimation method and its application to gravity anomaly inversion of basin basements[J]. Chinese Journal of Geophysics, 2021, 64(10): 3756-3765. [10] MU Dapeng, YAN Haoming, FENG Wei, et al. GRACE leakage error correction with regularization technique: case studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017,208(3):1775-1786. [11] SHEN Yunzhong, XU Peiliang, LI Bofeng. Bias-corrected regularized solution to inverse ill-posed models[J]. Journal of Geodesy, 2012, 86(8): 597-608. [12] XU Peiliang, SHEN Yunzhong, FUKUDA Y, et al. Variance component estimation in linear inverse ill-posed models[J]. Journal of Geodesy, 2006, 80(2): 69-81. [13] TIKHONOV A N. Regularization of ill-posed problems[J]. Dokl Akad Nauk SSSR, 1963, 151(1):49-52. [14] GUI Qingming, HAN Songhui. New algorithm of GPS rapid positioning based on double-k-type ridge estimation[J]. Journal of Surveying Engineering, 2007, 133(4): 173-178. [15] SAVE H, BETTADPUR S, TAPLEY B D. Reducing errors in the GRACE gravity solutions using regularization[J]. Journal of Geodesy, 2012, 86(9): 695-711. [16] 徐新禹, 李建成, 王正涛, 等. Tikhonov正则化方法在GOCE重力场求解中的模拟研究[J]. 测绘学报, 2010, 39(5): 465-470. XU Xinyu, LI Jiancheng, WANG Zhengtao, et al. The simulation research on the Tikhonov regularization applied in gravity field determination of GOCE satellite mission[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 465-470. [17] HOERL A E, KENNARD R W. Ridge regression: biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67. [18] 林东方, 朱建军, 宋迎春, 等. 正则化的奇异值分解参数构造法[J]. 测绘学报, 2016, 45(8): 883-889. LIN Dongfang, ZHU Jianjun, SONG Yingchun, et al. Construction method of regularization by singular value decomposition of design matrix[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 883-889. [19] GOLUB G H, HEATH M, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215-223. [20] XU Peiliang. Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems[J]. Geophysical Journal International, 2009, 179(1): 182-200. [21] FENU C, REICHEL L, RODRIGUEZ G, et al. GCV for Tikhonov regularization by partial SVD[J]. BIT Numerical Mathematics, 2017, 57(4): 1019-1039. [22] HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4): 561-580. [23] XU Peiliang. Determination of surface gravity anomalies using gradiometric observables[J]. Geophysical Journal International, 1992, 110(2): 321-332. [24] SCHAFFRIN B. Minimum mean squared error (MSE) adjustment and the optimal Tykhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE)[J]. Journal of Geodesy, 2008, 82(2): 113-121. [25] 徐天河, 杨元喜. 均方误差意义下正则化解优于最小二乘解的条件[J]. 武汉大学学报(信息科学版), 2004, 29(3): 223-226. XU Tianhe, YANG Yuanxi. Condition of regularization solution superior to LS solution based on MSE principle[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 223-226. [26] 王兴涛, 石磐, 朱非洲. 航空重力测量数据向下延拓的正则化算法及其谱分解[J]. 测绘学报, 2004,33(1): 33-38. WANG Xingtao, SHI Pan, ZHU Feizhou. Regularizationmethods and spectral decomposition for the downward continuation of airborne gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1): 33-38. [27] LIN Dongfang, ZHU Jianjun, LI Chaokui, et al. Bias reduction method for parameter inversion of ill-posed surveying model[J]. Journal of Surveying Engineering, 2020, 146(3): 4020011. [28] BAUER F, LUKAS M A. Comparingparameter choice methods for regularization of ill-posed problems[J]. Mathematics and Computers in Simulation, 2011, 81(9): 1795-1841. [29] REICHEL L, RODRIGUEZ G. Old and new parameter choice rules for discrete ill-posed problems[J]. Numerical Algorithms, 2013, 63(1): 65-87. [30] SONG Yingchun, XIA Yuguo, XIE Xuemei. Adjustment model and algorithm based on ellipsoid uncertainty[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 59-66. [31] 林东方, 姚宜斌, 郑敦勇, 等. 利用TSVD参数估值变化特性确定算法截断参数[J]. 测绘学报, 2022, 51(8): 1787-1796. LIN Dongfang, YAO Yibin, ZHENG Dunyong, et al. Determination of truncation parameter based on the differences of TSVD parameter estimates for ill-posed problems in geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1787-1796. [32] 林东方, 朱建军, 付海强, 等. 均方误差意义下的正则化参数二次优化方法[J]. 测绘学报, 2020, 49(4): 443-451. LIN Dongfang, ZHU Jianjun, FU Haiqiang, et al. Optimization of regularization parameter based on minimum MSE[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 443-451. [33] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):1-8. [34] 付海强, 朱建军, 汪长城, 等. 极化干涉SAR植被高反演复数最小二乘平差法[J]. 测绘学报, 2014, 43(10): 1061-1067. FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Polarimetric SAR interferometry vegetation height inversion method of complex least squares adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 1061-1067. [35] 林东方, 朱建军, 李志伟, 等. 顾及地表散射贡献与多基线参数线性相关性的PolInSAR植被高反演方法[J]. 测绘学报, 2023, 52(1): 51-60. LIN Dongfang, ZHU Jianjun, LI Zhiwei, et al. A multi-baseline PolInSAR forest height inversion method taking into account the ground scattering effects and parametric linear[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 51-60. |