[1] SAASTAMOINEN J H. Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15: 247-251. [2] 李博峰, 王苗苗, 沈云中, 等. 不同全球对流层天顶延迟产品在中国区域的比较[J]. 同济大学学报(自然科学版), 2014, 42(8): 1267-1272. LI Bofeng, WANG Miaomiao, SHEN Yunzhong, et al. Comparison of different global troposphere zenith path delay products in China[J]. Journal of Tongji University (Natural Science), 2014, 42(8): 1267-1272. [3] YANG Fei, GUO Jiming, MENG Xiaolin, et al. Establishment and assessment of a zenith wet delay (ZWD) augmentation model[J]. GPS Solutions, 2021, 25(4): 148. [4] LU Cuixian, LI Xingxing, ZUS F, et al. Improving BeiDou real-time precise point positioning with numerical weather models[J]. Journal of Geodesy, 2017, 91(9): 1019-1029. [5] 伍冠滨, 陈俊平, 伍晓勐, 等. 基于非差非组合PPP-RTK的大气改正模型及其性能验证[J]. 测绘学报, 2020, 49(11): 1407-1418. WU Guanbin, CHEN Junping, WU Xiaomeng, et al. Modeling and assessment of regional atmospheric corrections based on undifferenced and uncombined PPP-RTK[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1407-1418. [6] HOPFIELD H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical Research, 1969, 74(18): 4487-4499. [7] COLLINS J P, LANGLEY R B. A tropospheric delay model for the user of the wide area augmentation system[M].Fredericton: Department of Geodesy and Geomatics Engineering, University of New Brunswick, 1997. [8] LEANDRO R, SANTOS M, LANGLEY R. UNB neutral atmosphere models: development and performance[C]//Proceedings of 2006 National Technical Meeting of the Institute of Navigation. Monterey: ION, 2006: 564-573. [9] MÖLLER G R, WEBER R, BÖHM J. Improved troposphere blind models based on numerical weather data[C]//Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville: ION, 2013: 2489-2495. [10] KRUEGER E, SCHUELER T, HEIN G W, et al. Galileo tropospheric correction approaches developed within GSTB-V1[C]//Proceedings of ENC-GNSS2004. Rotterdam:[s.n.], 2004. [11] KRUEGER E, SCHVLER T, ARBESSER-RASTBURG B. The standard tropospheric correction model for the European satellite navigation system Galileo[C]//Proceedings of 2005 General Assembly of International Union of Radio Science (URSI). New Delhi: URSI, 2005. [12] SCHVLER T. The TropGrid2 standard tropospheric correction model[J]. GPS Solutions, 2014, 18(1): 123-131. [13] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. [14] YAO Yibin, HU Yufeng. An empirical zenith wet delay correction model using piecewise height functions[J]. Annales Geophysicae, 2018, 36(6): 1507-1519. [15] MÖLLER G, WEBER R, BÖHM J. Improved troposphere blind models based on numerical weather data[J]. Navigation, 2014, 61(3): 203-211. [16] ZHENG Fu, LOU Yidong, GU Shengfeng, et al. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning[J]. Journal of Geodesy, 2018, 92(5): 545-560. [17] YAO Yibin, SUN Zhangyu, XU Chaoqian. Establishment and evaluation of a new meteorological observation-based grid model for estimating zenith wet delay in ground-based global navigation satellite system (GNSS)[J]. Remote Sensing, 2018, 10(11): 1718. [18] SUN Zhangyu, ZHANG Bao, YAO Yibin. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions[J]. Earth and Space Science, 2019, 6(10): 1926-1941. [19] 黄良珂, 朱葛, 彭华, 等. 全球ZWD垂直剖面滑动窗口的格网模型[J]. 测绘学报, 2021, 50(5): 685-694. DOI: 10.11947/j.AGCS.2021.20200515. HUANG Liangke, ZHU Ge, PENG Hua, et al. A global grid model for the vertical correction of zenith wet delay based on the sliding window algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 685-694. DOI: 10.11947/j.AGCS.2021.20200515. [20] LI Lei, XU Ying, YAN Lizi, et al. A regional NWP tropospheric delay inversion method based on a general regression neural network model[J]. Sensors, 2020, 20(11): 3167. [21] DING Maohua. A second generation of the neural network model for predicting weighted mean temperature[J]. GPS Solutions, 2020, 24(2): 61. [22] ZHENG D Y, HU W S, WANG J, et al. Research on regional zenith tropospheric delay based on neural network technology[J]. Survey Review, 2015, 47(343): 286-295. [23] JIN Shuanggen, LI Z, CHO J. Integrated water vapor field and multiscale variations over China from GPS measurements[J]. Journal of Applied Meteorology and Climatology, 2008, 47(11): 3008-3015. [24] THAYER G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. [25] HAGEMANN S, BENGTSSON L, GENDT G. On the determination of atmospheric water vapor from GPS measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21): 4678. [26] WARE R, CARPENTER R, GVLDNER J, et al. A multichannel radiometric profiler of temperature, humidity, and cloud liquid[J]. Radio Science, 2003, 38(4): 1-13. [27] CHEN Qinming, SONG Shuli, HEISE S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. GPS Solutions, 2011, 15(4): 415-425. [28] YUAN Qiangqiang, XU Hongzhang, LI Tongwen, et al. Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S.[J]. Journal of Hydrology, 2020, 580: 124351. [29] ZHANG Bao, YAO Yibin. Precipitable water vapor fusion based on a generalized regression neural network[J]. Journal of Geodesy, 2021, 95(3): 36. [30] LI Wei, YUAN Yunbin, OU Jikun, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139. [31] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Science, 1987, 22(3): 379-386. [32] 胡羽丰. 全球高精度对流层延迟建模及其在地基GNSS技术中的应用研究[J]. 测绘学报, 2020, 49(4): 535. DOI: 10.11947/j.AGCS.2020.20190099. HU Yufeng. Research on the establishment of global tropospheric delay model with high precision and its applications in ground-based GNSS techniques[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 535. DOI: 10.11947/j.AGCS.2020.20190099. [33] RODRÍGUEZ J D, PÉREZ A, LOZANO J A. Sensitivity analysis of Kappa-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 569-575. [34] 姚宜斌, 余琛, 胡羽丰, 等. 利用非气象参数对流层延迟估计模型加速PPP收敛[J]. 武汉大学学报(信息科学版), 2015, 40(2): 188-192, 221. YAO Yibin, YU Chen, HU Yufeng, et al. Usingnon-meteorological parameters tropospheric delay estimation model for accelerating convergence of PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 188-192, 221. |