[1] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1):1-6. YANG Yuanxi. Progress, contribution and challenges of compass/BeiDou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6. [2] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服务性能[J]. 测绘学报, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. GUO Shuren, CAI Hongliang, MENG Yinan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. [3] CHEN Qiuli, YANG Hui, CHEN Zhonggui, et al. Solar radiation pressure modeling and application of BDS satellites[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):45-52. DOI:10.11947/j.JGGS.2020.0205. [4] LI Xingxing, XIE Weiliang, HUANG Jiaxin, et al. Estimation and analysis of differential code biases for BDS3/BDS2 using iGMAS and MGEX observations[J]. Journal of Geodesy, 2019, 93(3):419-435. [5] 章浙涛, 李博峰, 何秀凤. 北斗三号多频相位模糊度无几何单历元固定方法[J]. 测绘学报, 2020, 49(9):1139-1148. DOI:10.11947/j.AGCS.2020.20200325. ZHANG Zhetao, LI Bofeng, HE Xiufeng. Geometry-free single-epoch resolution of BDS-3 multi-frequency carrier ambi-guities[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1139-1148. DOI:10.11947/j.AGCS.2020.20200325. [6] 李昕, 郭际明, 周吕, 等. 一种精确估计区域北斗接收机硬件延迟的方法[J]. 测绘学报, 2016, 45(8):929-934. DOI:10.11947/j.AGCS.2016.20160044. LI Xin, GUO Jiming, ZHOU Lü, et al. An accurate method for the BDS receiver DCB estimation in a regional network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):929-934. DOI:10.11947/j.AGCS.2016.20160044. [7] HAUSCHILD A, MONTENBRUCK O, SLEEWAEGEN J M, et al. Characterization of compass M-1 signals[J]. GPS Solutions, 2012, 16(1):117-126. [8] WANNINGER L, BEER S. BeiDou satellite-induced code pseudorange variations:diagnosis and therapy[J]. GPS Solutions, 2015, 19(4):639-648. [9] LOU Yidong, GONG Xiaopeng, GU Shengfeng, et al. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines[J]. GPS Solutions, 2017, 21(1):177-186. [10] 楼益栋, 龚晓鹏, 辜声峰, 等. 北斗卫星伪距码偏差特性及其影响分析[J]. 武汉大学学报(信息科学版), 2017, 42(8):1040-1046. LOU Yidong, GONG Xiaopeng, GU Shengfeng, et al. The characteristic and effect of code bias variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1040-1046. [11] 汪捷, 何锡扬. 北斗卫星伪距多路径系统偏差的修正方法及其对单频PPP的影响分析[J]. 测绘学报, 2017, 46(7):841-847. DOI:10.11947/j.AGCS.2017.20170020. WANG Jie, HE Xiyang. Correction model of BeiDou code systematic multipath errors and its impacts on single-frequency PPP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):841-847. DOI:10.11947/j.AGCS.2017.20170020. [12] 阮仁桂, 贾小林, 冯来平. BDS卫星星内多径及其对宽巷FCB解算的影响分析[J]. 测绘学报, 2017, 46(8):961-970. DOI:10.11947/j.AGCS.2017.20160418. RUAN Rengui, JIA Xiaolin, FENG Laiping. Analysis on BDS satellite internal multipath and its impact on wide-lane FCB estimation[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):961-970. DOI:10.11947/j.AGCS.2017.20160418. [13] ZHANG Xiaohong, WU Mingkui, LIU Wanke, et al. Initial assessment of the COMPASS/BeiDou-3:new-generation navigation signals[J]. Journal of Geodesy, 2017, 91(10):1225-1240. [14] EDGAR C, CZOPEK F, BARKER B. A co-operative anomaly resolution on PRN-19[C]//Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999). Nashville, TN:ION, 1999:2269-2268. [15] LESTARQUIT L, GREGOIRE Y, THEVENON P. Characterising the GNSS correlation function using a high gain antenna and long coherent integration-application to signal quality monitoring[C]//Proceedings of 2012 IEEE/ION Position, Location and Navigation Symposium. Myrtle Beach, SC:IEEE, 2012:877-885. [16] HEGARTY C J, POWERS E D, FONVILLE B. Accounting for timing biases between GPS, modernized GPS, and Galileo signals[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005). Long Beach, CA:Long Beach Convention Center, 2005:2401-2407. [17] 唐成盼, 宿晨庚, 胡小工, 等. 北斗卫星伪距偏差标定及对用户定位精度影响[J]. 测绘学报, 2020, 49(9):1131-1138. DOI:10.11947/j.AGCS.2020.20200329. TANG Chengpan, SU Chengeng, HU Xiaogong, et al. Characterization of pesudorange bias and its effect on positioning for BDS satellites[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1131-1138. DOI:10.11947/j.AGCS.2020.20200329. [18] HAUSCHILD A, MONTENBRUCK O. A study on the dependency of GNSS pseudorange biases on correlator spacing[J]. GPS Solutions, 2016, 20(2):159-171. [19] HAUSCHILD A, STEIGENBERGER P, MONTENBRUCK O. Inter-receiver GNSS pseudorange biases and their effect on clock and DCB estimation[C]//Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2019). Miami, Florida:ION, 2019:3675-3685. [20] GONG Xiaopeng, LOU Yidong, ZHENG Fu, et al. Evaluation and calibration of BeiDou receiver-related pseudorange biases[J]. GPS Solutions, 2018, 22(4):98. [21] ZHENG Fu, GONG Xiaopeng, LOU Yidong, et al. Calibration of BeiDou triple-frequency receiver-related pseudorange biases and their application in BDS precise positioning and ambiguity resolution[J]. Sensors, 2019, 19(16):3500. [22] GONG Xiaopeng, GU Shengfeng, ZHENG Fu, et al. Improving GPS and Galileo precise data processing based on calibration of signal distortion biases[J]. Measurement, 2021, 174:108981. [23] MELBOURNE W G. The case for ranging in GPS based geodetic systems[C]//Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, MD:U.S. Department of Commerce, 1985:373-386. [24] WVBBENA G. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements[C]//Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, MD:U.S. Department of Commerce, 1985:403-412. [25] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)-achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697. [26] MONTENBRUCK O, STEIGENBERGER P, KHACHIKYAN R, et al. IGS-MGEX:preparing the ground for multi-constellation GNSS science[J]. Inside GNSS, 2014, 9(1):42-49. [27] JIAO W. International GNSS monitoring and assessment system (iGMAS) and latest progress[C]//Proceedings of 2014 China Satellite Navigation Conference (CSNC). Nanjing:CSNC, 2014. [28] 陈康慷, 徐天河, 杨玉国, 等. iGMAS GNSS钟差产品综合与评估[J]. 测绘学报, 2016, 45(S2):46-53. DOI:10.11947/j.AGCS.2016.F025. CHEN Kangkang, XU Tianhe, YANG Yuguo, et al. Combination and assessment of GNSS clock products from iGMAS analysis centers[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2):46-53. DOI:10.11947/j.AGCS.2016.F025. [29] MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps[J]. Navigation, 2014, 61(3):191-201. |