[1] 陈锐志,陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报, 2017, 46(10):1316-1326.DOI:10.11947/j.AGCS.2017.20170383. CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones:the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. [2] 李清泉,周宝定,马威,等. GIS辅助的室内定位技术研究进展[J].测绘学报, 2019, 48(12):1498-1506.DOI:10.11947/j.AGCS.2019.20190455. LI Qingquan, ZHOU Baoding, MA Wei, et al. Research process of GIS-aided indoor localization[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1498-1506. DOI:10.11947/j.AGCS.2019.20190455. [3] LIM C H, WAN Yahong, NG B P, et al. A real-time indoor WiFi localization system utilizing smart antennas[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2):618-622. [4] 吴东金,夏林元.面向室内WLAN定位的动态自适应模型[J].测绘学报, 2015, 44(12):1322-1330.DOI:10.11947/j.AGCS.2015.20130780. WU Dongjin, XIA Linyuan. Dynamic adaptive model for indoor WLAN localization[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1322-1330. DOI:10.11947/j.AGCS.2015.20130780. [5] ZHUANG Yuan, YANG Jun, LI You, et al. Smartphone-based indoor localization with bluetooth low energy beacons[J]. Sensors, 2016, 16(5):596-615. [6] HAZAS M, HOPPER A. Broadband ultrasonic location systems for improved indoor positioning[J]. IEEE Transactions on Mobile Computing, 2006, 5(5):536-547. [7] ATHALYE A, SAVIC V, BOLIC M, et al. Novel semi-passive RFID system for indoor localization[J]. IEEE Sensors Journal, 2013, 13(2):528-537. [8] DE ANGELIS A, DWIVEDI S, HÄNDEL P. Characterization of a flexible UWB sensor for indoor localization[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(5):905-913. [9] SUBBU K P, GOZICK B, DANTU R. Locate me:magnetic-fields-based indoor localization using smartphones[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4):73-99. [10] LOWRY S, SVNDERHAUF N, NEWMAN P, et al. Visual place recognition:a survey[J]. IEEE Transactions on Robotics, 2016, 32(1):1-19. [11] DI Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and applications of visual SLAM[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):38-49. DOI:10.11947/j.JGGS.2019.0205. [12] CHENG Chuanqi, HAO Xiangyang, LI Jiansheng, et al. A robust Gaussian mixture model for mobile robots' vision-based pose estimation[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):79-90. DOI:10.11947/j.JGGS.2019.0308. [13] HUANG J Y, LEE S H, TSAI C H. A fast image matching technique for the panoramic-based localization[C]//Proceedings of 2016 IEEE/ACIS:the 15th International Conference on Computer and Information Science (ICIS).Okayama, Japan:IEEE, 2016:1-6. [14] SATTLER T, LEIBE B, KOBBELT L. Fast image-based localization using direct 2D-to-3D matching[C]//Proceedings of 2011 International Conference on Computer Vision.Barcelona, Spain:IEEE, 2011:667-674. [15] GAO Ruipeng, TIAN Yang, YE Fan, et al. Sextant:towards ubiquitous indoor localization service by photo-taking of the environment[J]. IEEE Transactions on Mobile Computing, 2016, 15(2):460-474. [16] XIAO Aoran, CHEN Ruizhi, LI Deren, et al. An indoor positioning system based on static objects in large indoor scenes by using smartphone cameras[J]. Sensors, 2018, 18(7):2229. [17] WU Dewen, CHEN Ruizhi, CHEN Liang. Visual positioning indoors:human eyes vs. smartphone cameras[J]. Sensors, 2017, 17(11):2645-2650. [18] WU Teng, LIU Jingbin, LI Zheng, et al. Accurate smartphone indoor visual positioning based on a high-precision 3D photorealistic map[J]. Sensors, 2018, 18(6):1974-1994. [19] ZHOU Yan, ZHENG Xianwei, CHEN Ruizhi, et al. Image-based localization aided indoor pedestrian trajectory estimation using smartphones[J]. Sensors, 2018, 18(1):258-276. [20] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [21] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [22] SIAGIAN C, ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):300-312. [23] LIU Tao, ZHANG Xing, LI Qingquan, et al. A visual-based approach for indoor radio map construction using smartphones[J]. Sensor,2017, 17(8):1790-1807. [24] LIU Tao, ZHANG Xing, LI Qingquan, et al. An accurate visual-inertial integrated geo-tagging method for crowdsourcing-based indoor localization[J]. Remote Sensing, 2019, 11(16):1912-1934. [25] SCHNEIDER M, CHANG S F. A robust content based digital signature for image authentication[C]//Proceedings of the 3rd IEEE International Conference on Image Processing.Lausanne, Switzerland:IEEE, 1996, 3:227-230. [26] FRIDRICH J, GOLJAN M. Robust hash functions for digital watermarking[C]//Proceedings of 2000 International Conference on Information Technology:Coding and Computing.Las Vegas, NV, USA:IEEE, 2000:178-183. [27] 乔君.基于图像内容安全的感知哈希方法研究[D].上海:上海应用技术大学, 2017. QIAO Jun. Research on perceptual Hashing based on image content security[D]. Shanghai:Shanghai Institute of Technology, 2017. [28] 陈斌.基于感知哈希算法的监控视频认证研究[D].深圳:深圳大学, 2017. CHEN Bin. Research on surveillance video authentication based on perceptual Hash algorithm[D]. Shenzhen:Shenzhen University, 2017. [29] 王前.基于视频感知哈希的动态手势跟踪方法研究[D].兰州:兰州理工大学, 2018. WANG Qian. Research on dynamic hand gesture tracking method based on video perceptual hashing[D]. Lanzhou:Lanzhou University of Technology, 2018. [30] 陈优良,肖钢,卞焕,等.一种融合动态预测的感知哈希目标跟踪算法[J].测绘通报, 2020(2):17-23.DOI:10.13474/j.cnki.11-2246.2020.0038. CHEN Youliang, XIAO Gang, BIAN Huan, et al. A perceptual Hash target tracking algorithm based on dynamic prediction[J]. Bulletin of Surveying and Mapping, 2020(2):17-23. DOI:10.13474/j.cnki.11-2246.2020.0038. [31] 丁凯孟.基于感知哈希的遥感影像认证算法研究[J].测绘学报, 2017, 46(9):1205-1205.DOI:10.11947/j.AGCS.2017.20170233. DING Kaimeng. Perceptual Hashing based authentication algorithm research for remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9):1205-1205. DOI:10.11947/j.AGCS.2017.20170233. [32] 张洪帅.基于图像感知哈希的场景分类[D].兰州:兰州大学, 2018. ZHANG Hongshuai. Scene classification based on image perception Hashing[D]. Lanzhou:Lanzhou University, 2018. [33] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th International Conference on Computer Vision.Kerkyra, Greece:IEEE, 1999, 2:1150-1157. [34] FISCHLER M A, BOLLES R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. |