Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1271-1293.doi: 10.11947/j.AGCS.2022.20220173
• Geodesy and Navigation • Previous Articles Next Articles
LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie
Received:
2022-03-06
Revised:
2022-07-12
Published:
2022-08-13
Supported by:
CLC Number:
LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293.
[1] 陈俊勇. GPS技术进展及其现代化[J].大地测量与地球动力学, 2010, 30(3):1-4. CHEN Junyong. On progress in technology and modernization of GPS[J]. Journal of Geodesy and Geodynamics, 2010, 30(3):1-4. [2] 杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010, 39(1):1-6. YANG Yuanxi. Progress, contribution and challenges of compass/BeiDou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6. [3] KOGURE S, GANESHAN A S, MONTENBRUCK O. Regional systems[M]//TEUNISSEN P J G, MONTENBRUCK O. Springer Handbook of Global Navigation Satellite Systems. Cham:Springer, 2017:305-338. [4] 赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉:武汉大学, 2004. ZHAO Qile. Research on precise orbit determination theory and software of both GPS navigation constellation and LEO satellites[D]. Wuhan:Wuhan University, 2004. [5] LI Xingxing, ZHU Yiting, ZHENG Kai, et al. Precise orbit and clock products of Galileo, BDS and QZSS from MGEX Since 2018:comparison and PPP validation[J]. Remote Sensing, 2020, 12(9):1415. DOI:10.3390/rs12091415. [6] YANG Daoning, YANG Jun, LI Gang, et al. Globalization highlight:orbit determination using BeiDou inter-satellite ranging measurements[J]. GPS Solutions, 2017, 21(3):1395-1404. DOI:10.1007/s10291-017-0626-5. [7] 李敏.多模GNSS融合精密定轨理论及其应用研究[D].武汉:武汉大学, 2011. LI Min. Research on multi-GNSS precise orbit determination theory and application[D]. Wuhan:Wuhan University, 2011. [8] 袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].武汉:中国科学院研究生院(测量与地球物理研究所), 2002. YUAN Yunbin. Study on theories and methods of correcting ionospheric delay and monitoring ionosphere based on GPS[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002. [9] LE A Q, KESHIN M O, VAN DER MAREL H. Single and dual-frequency precise point positioning:approaches and performances[C]//Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies. Noordwijk, Wederland:ESA Publications, 2007. [10] LEANDRO R F. Precise point positioning with GPS:a new approach for positioning, atmospheric studies, and signal analysis[D]. Fredericton:University of New Brunswick, 2009. [11] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J].测绘学报, 2014, 43(10):1099-1099. DOI:10.13485/j.cnki.11-2089.2014.0155. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1099-1099. DOI:10.13485/j.cnki.11-2089.2014.0155. [12] LIU Teng, ZHANG Baocheng. Estimation of code observation-specific biases (OSBs) for the modernized multi-frequency and multi-GNSS signals:an undifferenced and uncombined approach[J]. Journal of Geodesy, 2021, 95(8):97. DOI:10.1007/s00190-021-01549-x. [13] LI Xingxing, GE Maorong, ZHANG Hongping, et al. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning[J]. Journal of Geodesy, 2013, 87(5):405-416. DOI:10.1007/s00190-013-0611-x. [14] LI Xin, LI Xingxing, LIU Gege, et al. BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a+b signals and legacy B1I/B3I signals[J]. Journal of Geodesy, 2020, 94(10):107. DOI:10.1007/s00190-020-01439-8. [15] 辜声峰.多频GNSS非差非组合精密数据处理理论及其应用[D].武汉:武汉大学, 2013. GU Shengfeng. Research on the zero-difference un-combined data processing model for multi-frequency GNSS and its applications[D]. Wuhan:Wuhan University, 2013. [16] 周锋.多系统GNSS非差非组合精密单点定位相关理论和方法研究[D].上海:华东师范大学, 2018. ZHOU Feng. Theory and methodology of multi-GNSS undifferenced and uncombined precise point positioning[D]. Shanghai:East China Normal University, 2018. [17] SCHÖNEMANN E. Analysis of GNSS raw observations in PPP solutions[M]. Darmstadt:Technische Universität Darmstadt, 2013. [18] 郭靖.姿态、光压和函数模型对导航卫星精密定轨影响的研究[D].武汉:武汉大学, 2014. GUO Jing. The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites[D]. Wuhan:Wuhan University, 2014. [19] 陈华.基于原始观测值的GNSS统一快速精密数据处理方法[D].武汉:武汉大学, 2015. CHEN Hua. An efficient and unified GNSS raw data processing strategy[D]. Wuhan:Wuhan University, 2015. [20] STRASSER S, MAYER-GVRR T, ZEHENTNER N. Processing of GNSS constellations and ground station networks using the raw observation approach[J]. Journal of Geodesy, 2019, 93(7):1045-1057. DOI:10.1007/s00190-018-1223-2. [21] 李星星,黄健德,袁勇强,等. Galileo三频非组合精密定轨模型及精度评估[J].测绘学报, 2020, 49(9):1120-1130. DOI:10.11947/j.AGCS.2020.20200320. LI Xingxing, HUANG Jiande, YUAN Yongqiang, et al. Galileo triple-frequency uncombined precise orbit determination:model and quality assessment[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1120-1130. DOI:10.11947/j.AGCS.2020.20200320. [22] 曾添.多频GNSS精密定轨及低轨卫星增强研究[D].郑州:信息工程大学, 2020. ZENG Tian. Research on multi-frequency GNSS precise orbit determination and low earth orbit satellite enhancement[D]. Zhengzhou:Information Engineering University, 2020. [23] BLEWITT G. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing:ambizap[J]. Journal of Geophysical Research, 2008, 113(B12):B12410. DOI:10.1029/2008JB005736. [24] BLEWITT G, BERTIGER W, WEISS J P. Ambizap3 and GPS carrier-range:a new data type with IGS applications[C]//Proceedings of 2010 IGS Workshop and Vertical Rates. Newcastle:[s.n.], 2010:28. [25] 匡开发. GNSS卫星实时精密定轨技术研究[D].武汉:武汉大学, 2019. KUANG Kaifa. Research on GNSS satellite real-time precise orbit determination technique[D]. Wuhan:Wuhan University, 2019. [26] TEUNISSEN P J G, JOOSTEN P, TIBERIUS C C J M. A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution[C]//Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR, USA:Institute of Navigation, 2002:2799-2808. [27] BEUTLER G, BOCK H, DACH R, et al. Bernese GPS software version 5.0[R]. Bern:Astronomical Institute, University of Bern, 2007. [28] GE M, GENDT G, DICK G, et al. Improving carrier-phase ambiguity resolution in global GPS network solutions[J]. Journal of Geodesy, 2005, 79(1):103-110. DOI:10.1007/s00190-005-0447-0. [29] GENG Tao, XIE Xin, ZHAO Qile, et al. Improving BDS integer ambiguity resolution using satellite-induced code bias correction for precise orbit determination[J]. GPS Solutions, 2017, 21(3):1191-1201. DOI:10.1007/s10291-017-0602-0. [30] LOU Yidong, GONG Xiaopeng, GU Shengfeng, et al. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines[J]. GPS Solutions, 2017, 21(1):177-186. DOI:10.1007/s10291-016-0514-4. [31] LIU Yang, GE Maorong, SHI Chuang, et al. Improving integer ambiguity resolution for GLONASS precise orbit determination[J]. Journal of Geodesy, 2016, 90(8):715-726. DOI:10.1007/s00190-016-0904-y. [32] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):401. DOI:10.1007/s00190-007-0208-3. [33] LI Xingxing, LI Xin, YUAN Yongqiang, et al. Multi-GNSS phase delay estimation and PPP ambiguity resolution:GPS, BDS, GLONASS, Galileo[J]. Journal of Geodesy, 2018, 92(6):579-608. DOI:10.1007/s00190-017-1081-3. [34] LI Xingxing, LI Xin, LIU Gege, et al. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS:BDS and Galileo[J]. Journal of Geodesy, 2019, 93(8):1105-1122. DOI:10.1007/s00190-019-01229-x. [35] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center[J]. Journal of Geodesy, 2012, 86(11):991-1003. DOI:10.1007/s00190-012-0559-2. [36] LOYER S, PEROSANZ F, VERSINI L, et al. CNES/CLS IGS Analysis center:recent activities[C]//Proceedings of 2018 IGS Workshop. Wuhan:[s.n.], 2018. [37] CHEN Hua, JIANG Weiping, GE Maorong, et al. An enhanced strategy for GNSS data processing of massive networks[J]. Journal of Geodesy, 2014, 88(9):857-867. DOI:10.1007/s00190-014-0727-7. [38] GENG Jianghui, MENG Xiaolin, DODSON A H, et al. Integer ambiguity resolution in precise point positioning:method comparison[J]. Journal of Geodesy, 2010, 84(9):569-581. DOI:10.1007/s00190-010-0399-x. [39] LI Xingxing, XIONG Yun, YUAN Yongqiang, et al. Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution[J]. Journal of Geodesy, 2019, 93(12):2515-2528. DOI:10.1007/s00190-019-01312-3. [40] SCHMID R, ROTHACHER M, THALLER D, et al. Absolute phase center corrections of satellite and receiver antennas:impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna[J]. GPS Solutions, 2005, 9(4):283-293. DOI:10.1007/s10291-005-0134-x. [41] KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J]. GPS Solutions, 2009, 13(1):1-12. DOI:10.1007/s10291-008-0092-1. [42] DILSSNER F, SPRINGER T, GIENGER G, et al. The GLONASS-M satellite yaw-attitude model[J]. Advances in Space Research, 2011, 47(1):160-171. DOI:10.1016/j.asr.2010.09.007. [43] MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS satellite geometry and attitude models[J]. Advances in Space Research, 2015, 56(6):1015-1029. DOI:10.1016/j.asr.2015.06.019. [44] EGSC (European GNSS Service Centre). Galileo satellite metadata[DB/OL].[2022-01-08]. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. [45] CAO (Cabinet Office, Government of Japan). QZSS satellite information[DB/OL].[2022-05-01]. https://qzss.go.jp/en/technical/qzssinfo/. [46] GUO Jing, ZHAO Qile. Analysis of precise orbit determination for BeiDou satellites during yaw maneuvers[C]//Proceedings of 2014 China Satellite Navigation Conference. Nanjing:[s.n.], 2014. [47] GUO Jing, CHEN Guo, ZHAO Qile, et al. Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality[J]. GPS Solutions, 2017, 21(2):511-522. DOI:10.1007/s10291-016-0540-2. [48] DAI Xiaolei, GE Maorong, LOU Yidong, et al. Estimating the yaw-attitude of BDS IGSO and MEO satellites[J]. Journal of Geodesy, 2015, 89(10):1005-1018. DOI:10.1007/s00190-015-0829-x. [49] YUAN Yongqiang, Li Xingxing, ZHU Yiting, et al. Improving QZSS precise orbit determination by considering the solar radiation pressure of the L-band antenna[J]. GPS Solutions, 2020, 24(2):50. DOI:10.1007/s10291-020-0963-7. [50] 刘宇玺,贾小林,阮仁桂.北斗系统IGSO卫星新姿态控制模式下定轨精度分析[J].大地测量与地球动力学, 2017, 37(6):614-617. DOI:10.14075/j.jgg.2017.06.012. LIU Yuxi, JIA Xiaolin, RUAN Rengui. BeiDou IGSO Satellite orbit determination precision analysis based on new attitude control mode[J]. Journal of Geodesy and Geodynamics, 2017, 37(6):614-617. DOI:10.14075/j.jgg.2017.06.012. [51] LI Xingxing, YUAN Yongqiang, HUANG Jiande, et al. Galileo and QZSS precise orbit and clock determination using new satellite metadata[J]. Journal of Geodesy, 2019, 93(8):1123-1136. DOI:10.1007/s00190-019-01230-4. [52] MADER G L. GPS antenna calibration at the national geodetic survey[J]. GPS Solutions, 1999, 3(1):50-58. DOI:10.1007/PL00012780. [53] GE Maorong, GENDT G, DICK G, et al. Impact of GPS satellite antenna offsets on scale changes in global network solutions[J]. Geophysical Research Letters, 2005, 32(6):L06310. DOI:10.1029/2004gl022224. [54] REBISCHUNG P, GRIFFITHS J, RAY J, et al. IGS08:the IGS realization of ITRF2008[J]. GPS Solutions, 2012, 16(4):483-494. DOI:10.1007/s10291-011-0248-2. [55] REBISCHUNG P, SCHMID R. IGS14/igs14.atx:a new framework for the IGS products[C]//Proceedings of 2016 American Geophysical Union, Fall Meeting. San Francisco, CA, USA:IGS, 2016. [56] JÄGGI A, DILSSNER F, SCHMID R, et al. Extension of the GPS satellite antenna patterns to nadir angles beyond 14°[C]//Proceedings of 2012 EGU General Assembly. Vienna, Austria:EGU, 2012:14. [57] STEIGENBERGER P, FRITSCHE M, DACH R, et al. Estimation of satellite antenna phase center offsets for Galileo[J]. Journal of Geodesy, 2016, 90(8):773-785. DOI:10.1007/s00190-016-0909-6. [58] HUANG Guanwen, YAN Xingyuan, ZHANG Qin, et al. Estimation of antenna phase center offset for BDS IGSO and MEO satellites[J]. GPS Solutions, 2018, 22(2):49. DOI:10.1007/s10291-018-0716-z. [59] DILSSNER F, SPRINGER T, SCHÖNEMANN E, et al. Estimation of satellite antenna phase center corrections for BeiDou[C]//Proceedings of 2014 IGS Workshop. Pasadena, CA, USA:ESA, 2014:23-27. [60] YAN Xingyuan, HUANG Guanwen, ZHANG Qin, et al. Estimation of the antenna phase center correction model for the BeiDou-3 MEO satellites[J]. Remote Sensing, 2019, 11(23):2850. DOI:10.3390/rs11232850. [61] GUO Jing, XU Xiaolong, ZHAO Qile, et al. Precise orbit determination for quad-constellation satellites at Wuhan University:strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2):143-159. DOI:10.1007/s00190-015-0862-9. [62] LI Xingxing, YUAN Yongqiang, ZHU Yiting, et al. Precise orbit determination for BDS-3 experimental satellites using iGMAS and MGEX tracking networks[J]. Journal of Geodesy, 2019, 93(1):103-117. DOI:10.1007/s00190-018-1144-0. [63] VILLIGER A. igs14_2056:update including BeiDou-3S and BeiDou-3 satellites[DB/OL].[2019-06-04]. https://lists.igs.org/pipermail/igsmail/2019/007778.html. [64] CSNO (China Satellite Navigation Office). Satellite antenna phase center of BDS[DB/OL].[2019-06-10]. http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200323536112807882.atx. [65] 王晨.北斗导航卫星光压模型构建与精化研究[D].武汉:武汉大学, 2019. WANG Chen. Solar radiation pressure modelling for BeiDou navigation satellites[D]. Wuhan:Wuhan University, 2019. [66] BURY G, SOŚNICA K, ZAJDEL R, et al. Toward the 1-cm Galileo orbits:challenges in modeling of perturbing forces[J]. Journal of Geodesy, 2020, 94(2):16. DOI:10.1007/s00190-020-01342-2. [67] BEUTLER G, BROCKMANN E, GURTNER W, et al. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS):theory and initial results[J]. Manuscripta Geodaetica, 1994, 19(6):367-386. [68] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The multi-GNSS experiment (MGEX) of the International GNSS service (IGS)-achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697. DOI:10.1016/j.asr.2017.01.011. [69] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J]. Journal of Geodesy, 2015, 89(8):775-791. DOI:10.1007/s00190-015-0814-4. [70] LIU Junhong, GU Defeng, JU Bing, et al. A new empirical solar radiation pressure model for BeiDou GEO satellites[J]. Advances in Space Research, 2016, 57(1):234-244. DOI:10.1016/j.asr.2015.10.043. [71] PRANGE L, BEUTLER G, DACH R, et al. An empirical solar radiation pressure model for satellites moving in the orbit-normal mode[J]. Advances in Space Research, 2020, 65(1):235-250. DOI:10.1016/j.asr.2019.07.031. [72] FLIEGEL H F, GALLINI T E, SWIFT E R. Global positioning system radiation force model for geodetic applications[J]. Journal of Geophysical Research, 1992, 97(B1):559-568. DOI:10.1029/91jb02564. [73] FENG Weidong, GUO Xiangyu, QIU Hongxing, et al. A study of analytical solar radiation pressure modeling for BeiDou navigation satellites based on raytracing method[M]//SUN Jiadong, JIAO Wenhai, WU Haitao, et al. China Satellite Navigation Conference (CSNC)2014 Proceedings:Volume Ⅱ. Berlin, Heidelberg:Springer, 2014:425-435. [74] ZIEBART M. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape[J]. Journal of Spacecraft and Rockets, 2004, 41(5):840-848. DOI:10.2514/1.13097. [75] LI Xingxing, YUAN Yongqiang, ZHU Yiting, et al. Improving BDS-3 precise orbit determination for medium earth orbit satellites[J]. GPS Solutions, 2020, 24(2):53. DOI:10.1007/s10291-020-0967-3. [76] DUAN Bingbing, HUGENTOBLER U. Enhanced solar radiation pressure model for GPS satellites considering various physical effects[J]. GPS Solutions, 2021, 25(2):42. DOI:10.1007/s10291-020-01073-z. [77] DUAN Bingbing, HUGENTOBLER U, HOFACKER M, et al. Improving solar radiation pressure modeling for GLONASS satellites[J]. Journal of Geodesy, 2020, 94(8):72. DOI:10.1007/s00190-020-01400-9. [78] MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3):283-297. DOI:10.1007/s00190-014-0774-0. [79] DUAN Bingbing, HUGENTOBLER U, SELMKE I, et al. BeiDou satellite radiation force models for precise orbit determination and geodetic applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022. DOI:10.1109/TAES.2021.3140018. [80] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGEN-BERGER P. Impact of albedo radiation on GPS satellites[M]//KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin, Heidelberg:Springer, 2012:113-119. [81] BURY G, ZAJDEL R, SOŚNICA K. Accounting for perturbing forces acting on Galileo using a box-wing model[J]. GPS Solutions, 2019, 23(3):74. DOI:10.1007/s10291-019-0860-0. [82] SVEHLA D. Model of solar radiation pressure and thermal re-radiation[M]//SVEHLA D. Geometrical Theory of Satellite Orbits and Gravity Field. Cham:Springer, 2018:269-295. [83] COLOMBO O L. The dynamics of global positioning system orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7):9167-9182. DOI:10.1029/jb094ib07p09167. [84] WANG Chen, GUO Jing, ZHAO Qile, et al. Empirically derived model of solar radiation pressure for BeiDou GEO satellites[J]. Journal of Geodesy, 2019, 93(6):791-807. DOI:10.1007/s00190-018-1199-y. [85] SIDOROV D, DACH R, POLLE B, et al. Adopting the empirical CODE orbit model to Galileo satellites[J]. Advances in Space Research, 2020, 66(12):2799-2811. DOI:10.1016/j.asr.2020.05.028. [86] ZIEBART M, SIBTHORPE A, CROSS P, et al. Cracking the GPS-SLR orbit anomaly[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation. Fort Worth, TX, USA:Fort Worth Convention Center, 2007:2033-2038. [87] STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6):609-624. DOI:10.1007/s00190-017-1082-2. [88] EDGAR C, PRICE J, ITEIGH D. GPS Block ⅡA and ⅡR received signal power measurements[C]//Proceedings of 1998 National Technical Meeting of the Institute of Navigation. Long Beach, CA, USA:Westin Long Beach Hotel, 1998:401-411. [89] WU A. Predictions and field measurements of the GPS Block ⅡR L1 and L2 ground powers[C]//Proceedings of 2002 National Technical Meeting of the Institute of Navigation. San Diego, CA, USA:The Catamaran Resort Hotel, 2002:931-938. [90] GERDAN G P. A comparison of four methods of weighting double difference pseudorange measurements[J]. Australian Surveyor, 1995, 40(4):60-66. DOI:10.1080/00050334.1995.10558564. [91] HAN S. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning[J]. Journal of Geodesy, 1997, 71(6):351-361. DOI:10.1007/s001900050103. [92] KING R W, BOCK Y. Documentation for the GAMIT GPS analysis software[R]. Cambridge:Massachusetts Institute of Technology, 1995. [93] LIU Jingnan, GE Maorong. PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2):603-609. DOI:10.1007/bf02899825. [94] SATIRAPOD C. Stochastic models used in static GPS relative positioning[J]. Survey Review, 2006, 38(299):379-386. DOI:10.1179/sre.2006.38.299.379. [95] LAU L, MOK E. Improvement of GPS relative positioning accuracy by using SNR[J]. Journal of Surveying Engineering, 1999, 125(4):185-202. DOI:10.1061/(asce)0733-9453(1999)125:4(185). [96] 刘志强.基于随机模型精化的GPS精密定位算法研究与实现[D].南京:河海大学, 2007. LIU Zhiqiang. Research and implementation of precise GPS positioning data processing algorithm based on refined stochastic model[D]. Nanjing:Hohai University, 2007. [97] 刘金海,涂锐,张睿,等. Helmert方差分量估计在GPS/GLONASS/BDS组合定位权比确定中的应用[J].大地测量与地球动力学, 2018, 38(6):568-570, 576. DOI:10.14075/j.jgg.2018.06.004. LIU Jinhai, TU Rui, ZHANG Rui, et al. Application of helmert variance component estimation in GPS/GLONASS/BDS combined positioning weight determination[J]. Journal of Geodesy and Geodynamics, 2018, 38(6):568-570, 576. DOI:10.14075/j.jgg.2018.06.004. [98] 杨汀,陈宜金,陈浩男.最小二乘方差分量估计在GNSS差分定位随机模型精化中的应用[J].大地测量与地球动力学, 2017, 37(2):196-199, 204. DOI:10.14075/j.jgg.2017.02.018. YANG Ting, CHEN Yijin, CHEN Haonan. Least-squares variance component estimation applied to stochastic model refinement of GNSS difference positioning[J]. Journal of Geodesy and Geodynamics, 2017, 37(2):196-199, 204. DOI:10.14075/j.jgg.2017.02.018. [99] 何海波,杨元喜. GPS观测量先验方差-协方差矩阵实时估计[J].测绘学报, 2001, 30(1):42-47. HE Haibo, YANG Yuanxi. Real-time estimation of a prior variance-covariance for GPS observations[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(1):42-47. [100] 杨元喜,徐天河.基于移动开窗法协方差估计和方差分量估计的自适应滤波[J].武汉大学学报(信息科学版), 2003, 28(6):714-718. YANG Yuanxi, XU Tianhe. An adaptive Kalman filter combining variance component estimation with covariance matrix estimation based on moving window[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6):714-718. [101] WANG Yongchao, FENG Yanming, ZHENG Fu. Geometry-free stochastic analysis of BDS triple frequency signals[C]//Proceedings of 2016 International Technical Meeting of the Institute of Navigation. Monterey, CA, USA:The Institute of Navigation, 2016:956-969. [102] 黄令勇,吕志平,吕浩,等.北斗三频伪距相关随机模型单站建模方法[J].测绘学报, 2016, 45(S2):165-171. DOI:10.11947/j.AGCS.2016.F038. HUANG Lingyong, LVZhiping, LV Hao, et al. The BDS triple frequency pseudo-range correlated stochastic model of single station modeling method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2):165-171. DOI:10.11947/j.AGCS.2016.F038. [103] 张小红,马福建.低轨导航增强GNSS发展综述[J].测绘学报, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. [104] RIM H J, SCHUTZ B E, ABUSALI P A M, et al. Effect of GPS orbit accuracy on GPS-determined Topex/Poseidon orbit[C]//Proceedings of 1995 ION GPS-95.[S.l.]:Institute of Navigation, 1995:613-617. [105] ZHU Shengyuan, REIGBER C, KÖNIG R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of Geodesy, 2004, 78(1):103-108. DOI:10.1007/s00190-004-0379-0. [106] GENG Jianghui, SHI Changhong, ZHAO Qile, et al. Integrated adjustment of LEO and GPS in precision orbit determination[C]//Proceedings of 2008 VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Wuhan:Springer, 2008:133-137. [107] LI Xingxing, ZHANG Keke, MENG Xiangguang, et al. LEO-BDS-GPS integrated precise orbit modeling using FengYun-3D, FengYun-3C onboard and ground observations[J]. GPS Solutions, 2020, 24(2):48. DOI:10.1007/s10291-020-0962-8. [108] LI Xingxing, ZHANG Keke, MA Fujian, et al. Integrated precise orbit determination of multi-GNSS and large LEO constellations[J]. Remote Sensing, 2019, 11(21):2514. DOI:10.3390/rs11212514. [109] ZHAO Qile, WANG Chen, GUO Jing, et al. Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data[J]. GPS Solutions, 2017, 21(3):1179-1190. DOI:10.1007/s10291-017-0604-y. [110] LI Bofeng, GE Haibo, GE Maorong, et al. LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services[J]. Advances in Space Research, 2019, 63(1):73-93. DOI:10.1016/j.asr.2018.08.017. [111] HUANG Wen, MÄNNEL B, SAKIC P, et al. Integrated processing of ground-and space-based GPS observations:improving GPS satellite orbits observed with sparse ground networks[J]. Journal of Geodesy, 2020, 94(10):96. DOI:10.1007/s00190-020-01424-1. [112] 石立国.分布式卫星系统星间链路关键技术研究[D].北京:中国科学院国家空间科学中心, 2016. SHI Liguo. Research on key technologies of inter satellite links for distributed satellites system[D]. Beijing:National Space Science Center, the Chinese Academy of Sciences, 2016. [113] ANANDA M P, BERNSTEIN H, CUNNINGHAM K E, et al. Global positioning system (GPS) autonomous navigation[C]//Proceedings of 1990 IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences. Las Vegas, NV, USA:IEEE, 1990:497-508. [114] WANG Haihong, XIE Jun, ZHUANG Jianlou, et al. Performance analysis and progress of inter-satellite-link of BeiDou system[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR, USA:Oregon Convention Center, 2017:1178-1185. [115] XU Hongliang, WANG Jinling, ZHAN Xingqun. Autonomous broadcast ephemeris improvement for GNSS using inter-satellite ranging measurements[J]. Advances in Space Research, 2012, 49(6):1034-1044. DOI:10.1016/j.asr.2012.01.001. [116] REN Xia, YANG Yuanxi, ZHU Jun, et al. Orbit determination of the next-generation BeiDou satellites with intersatellite link measurements and a priori orbit constraints[J]. Advances in Space Research, 2017, 60(10):2155-2165. DOI:10.1016/j.asr.2017.08.024. [117] 阮仁桂,冯来平,贾小林.导航卫星星地/星间链路联合定轨中设备时延估计方法[J].测绘学报, 2014, 43(2):137-142, 157. DOI:10.13485/j.cnki.11-2089.2014.0020. RUAN Rengui, FENG Laiping, JIA Xiaolin. Equipment delay estimation for GNSS satellite combined orbit determi-nation with satellite-ground link and inter-satellite link observations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2):137-142, 157. DOI:10.13485/j.cnki.11-2089.2014.0020. [118] 冯来平.低轨卫星与星间链路增强的导航卫星精密定轨研究[D].郑州:信息工程大学, 2017. FENG Laiping. Study of precise orbit determination for GNSS enhanced by LEO satellite and inter-satellite ranging[D]. Zhengzhou:Information Engineering University, 2017. [119] ZHANG Rui, TU Rui, ZHANG Pengfei, et al. Orbit determination of BDS-3 satellite based on regional ground tracking station and inter-satellite link observations[J]. Advances in Space Research, 2021, 67(12):4011-4024. DOI:10.1016/j.asr.2021.02.027. [120] PRANGE L, ARNOLD D, DACH R, et al. CODE product series for the IGS-MGEX project[R].[S.l.]:Astronomical Institute, University of Bern, 2020. [121] SELMKE I, DUAN Bingbing, HUGENTOBLER U. Status of the TUM MGEX orbit and clock products[C]//Proceedings of 2018 IGS Workshop. Wuhan:[s.n.], 2018. [122] AGROTIS L, SCHÖNEMANN E, ENDERLE W, et al. The IGS real time service[C]//Proceedings of 2017 GNSS 2017-Kompetenz für die Zukunft. Potsdam, Germany:[s.n.], 2017. [123] LAURICHESSE D, CERRI L, BERTHIAS J P, et al. Real time precise GPS constellation and clocks estimation by means of a Kalman filter[C]//Proceedings of 2013 ION-GNSS. Nashville, TN, USA:Institute of Navigation, 2013:1155-1163. [124] 戴小蕾.基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D].武汉:武汉大学, 2016. DAI Xiaolei. Real-time precise GNSS satellite orbit determination using the SRIF method:theory and implemencation[D]. Wuhan:Wuhan University, 2016. [125] ZHAO Qile, GUO Jing, WANG Chen, et al. Precise orbit determination for BDS satellites[J]. Satellite Navigation, 2022, 3(1):2. DOI:10.1186/s43020-021-00062-y. [126] SCHULDT T, GOHLKE M, OSWALD M, et al. Optical clock technologies for global navigation satellite systems[J]. GPS Solutions, 2021, 25(3):83. DOI:10.1007/s10291-021-01113-2. [127] GIORGI G, SCHMIDT T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6):1256-1273. DOI:10.1016/j.asr.2019.06.010. |
[1] | SUN Heping, ZHOU Jiangcun, XU Jianqiao. Progress in deformation modeling of an SNREI Earth [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1119-1129. |
[2] | DONG Jie, ZHANG Zeyu, WEN Hanjiang, SUN Wenke. Pre-seismic anomalies and co-seismic gravity changes of 2011 Tohoku-Oki earthquake (Mw 9.0) detected by superconducting gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 63-70. |
[3] | ZHAO Jing, ZHAN Wei, REN Jinwei, JIANG Zaisen, GU Tie, LIU Jie, NIU Anfu, YUAN Zhengyi. GPS time series inversion of the healing process of the middle segment of the Longmenshan fault after the 2008 Wenchuan earthquake [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 37-51. |
[4] | ZHANG Qin, YAN Xingyuan, HUANG Guanwen, XIE Shichao, CAO Yu. Refinement of BeiDou satellite antenna phase center correction model and its impact on precision orbit determination and positioning [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1101-1111. |
[5] | LIU Cheng, GAO Weiguang, PAN Junyang, TANG Chengpan, HU Xiaogong, WANG Wei, CHEN Ying, LU Jun, SU Chengeng. Inter-satellite clock offsets adjustment based on closed-loop residual detection of BDS inter-satellite link [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1149-1157. |
[6] | FAN Caoming, WANG Shengli, OU Jikun. The Impact of Yaw Attitude of Eclipsing GPS/BDS Satellites on Phase Wind-up Solutions for PPP and Its Correction Model [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1165-1170. |
[7] | GUO Haitao, SUN Lei, SHEN Jiashuang, CHEN Xiaowei, ZHANG Hongwei. An Island and Coastal Image Segmentation Method Based on Quadtree and GAC Model [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 65-72. |
[8] | MENG Lingkui, LÜ Qifei. Improved Orthogonal T-Snake Model for Complex Water Boundary Extraction [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 670-677. |
[9] | . Design and Simulation for Satellite Autonomous Integrity Monitoring Based On Inter-Satellite-Links [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(Sup.): 73-79. |
[10] | . Spatial Simulation of Urban Heat Island Intensity Based on Support Vector Machine Technique: A Case Study in Beijing [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||