Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1294-1305.doi: 10.11947/j.AGCS.2022.20220091
• Geodesy and Navigation • Previous Articles Next Articles
XU Tianhe1, MU Dapeng1, YAN Haoming2, GUO Jinyun3, YIN Peng1
Received:
2022-02-14
Revised:
2022-04-26
Published:
2022-08-13
Supported by:
CLC Number:
XU Tianhe, MU Dapeng, YAN Haoming, GUO Jinyun, YIN Peng. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305.
[1] HAMLINGTON B D, GARDNER A S, IVINS E, et al. Understanding of contemporary regional sea-level change and the implications for the future[J]. Reviews of Geophysics, 2020, 58(3):e2019RG000672. DOI:10.1029/2019RG000672. [2] PROSHUTINSKY A, ASHIK I M, DVORKIN E N, et al. Secular sea level change in the Russian sector of the Arctic Ocean[J]. Journal of Geophysical Research:Oceans, 2004, 109(C3):C03042. DOI:10.1029/2003JC002007. [3] VERMEER M, RAHMSTORF S. Global sea level linked to global temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51):21527-21532. [4] MILNE G A, GEHRELS W R, HUGHES C W, et al. Identifying the causes of sea-level change[J]. Nature Geoscience, 2009, 2(7):471-478. [5] CHURCH J A, WHITE N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4):585-602. [6] WENZEL M, SCHROTER J. Global and regional sea level change during the 20th century[J]. Journal of Geophysical Research:Oceans, 2014, 119(11):7493-7508. [7] CALAFAT F M, CHAMBERS D P, TSIMPLIS M N. On the ability of global sea level reconstructions to determine trends and variability[J]. Journal of Geophysical Research:Oceans, 2014, 119(3):1572-1592. [8] HAY C C, MORROW E, KOPP R E, et al. Probabilistic reanalysis of twentieth-century sea-level rise[J]. Nature, 2015, 517(7535):481-484. [9] NEREM R S, BECKLEY B D, FASULLO J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9):2022-2025. [10] CHEN Xianyao, ZHANG Xuebin, CHURCH J A, et al. The increasing rate of global mean sea-level rise during 1993-2014[J]. Nature Climate Change, 2017, 7(7):492-495. [11] CAZENAVE A, PALANISAMY H, ABLAIN M. Contemporary sea level changes from satellite altimetry:what have we learned?what are the new challenges?[J]. Advances in Space Research, 2018, 62(7):1639-1653. [12] HAMLINGTON B D, FREDERIKSE T, NEREM R S, et al. Investigating the acceleration of regional sea level rise during the satellite altimeter era[J]. Geophysical Research Letters, 2020, 47(5):e2019GL086528. DOI:10.1029/2019GL086528. [13] DECONTO R M, POLLARD, D, ALLEY R B, et al. The Paris Climate Agreement and future sea-level rise from Antarctica[J]. Nature, 2021, 593(7857):83-89. [14] BAMBER J L, OPPENHEIMER M, KOPP R E, et al. Ice sheet contributions to future sea-level rise from structured expert judgment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23):11195-11200. [15] NICHOLLS R J, CAZENAVE A. Sea-level rise and its impact on coastal zones[J]. Science, 2010, 328(5985):1517-1520. [16] RIETBROEK R, BRUNNABEND S E, KUSCHE J, et al. Revisiting the contemporary sea-level budget on global and regional scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1504-1509. [17] WATSON P J. A new perspective on global mean sea level (GMSL) acceleration[J]. Geophysical Research Letters, 2016, 43(12):6478-6484. [18] FREDERIKSE T, LANDERER F, CARON L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821):393-397. [19] DIENG H B, CAZENAVE A, MEYSSIGNAC B, et al. New estimate of the current rate of sea level rise from a sea level budget approach[J]. Geophysical Research Letters, 2017, 44(8):3744-3751. [20] LEULIETTE E W, MILLER L. Closing the sea level rise budget with altimetry, Argo, and GRACE[J]. Geophysical Research Letters, 2009, 36(4):L04608. DOI:10.1029/2008GL036010. [21] CHEN J L, WILSON C R, TAPLEY B D. Contribution of ice sheet and mountain glacier melt to recent sea level rise[J]. Nature Geoscience, 2013, 6(7):549-552. [22] 姚宜斌,杨元喜,孙和平,等.大地测量学科发展现状与趋势[J].测绘学报, 2020, 49(10):1243-1251. DOI:10.11947/j.AGCS.2020.20200358. YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline:progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1243-1251. DOI:10.11947/j.AGCS.2020.20200358. [23] 姜卫平,赵伟,赵倩,等.新一代探测地球重力场的卫星编队[J].测绘学报, 2014, 43(2):111-117. DOI:10.13485/j.cnki.11-2089.2014.0016. JIANG Weiping, ZHAO Wei, ZHAO Qian, et al. Satellite formation for a new gravity field exploration mission[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2):111-117. DOI:10.13485/j.cnki.11-2089.2014.0016. [24] 陈俊勇.重力卫星和测高卫星五年来的进展[J].测绘科学, 2005, 30(5):9-10. CHEN Junyong. Development of gravity and altimeter satellites in the past five years[J]. Science of Surveying and Mapping, 2005, 30(5):9-10. [25] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5):358-369. [26] CHEN Jianli, TAPLEY B, WILSON C, et al. Global ocean mass change from GRACE and GRACE Follow-On and altimeter and Argo measurements[J]. Geophysical Research Letters, 2020, 47(22):e2020GL090656. DOI:10.1029/2020GL090656. [27] RISER S C, FREELAND H J, ROEMMICH D, et al. Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2):145-153. [28] LLOVEL W, WILLIS J K, LANDERER F W, et al. Deep-ocean contribution to sea level and energy budget not detectable over the past decade[J]. Nature Climate Change, 2014, 4(11):1031-1035. [29] MU Dapeng, XU Tianhe, XU Guochang. Detecting coastal ocean mass variations with GRACE mascons[J]. Geophysical Journal International, 2019, 217(3):2071-2080. [30] PIECUCH C G, QUINN K J. El Niño, La Niña, and the global sea level budget[J]. Ocean Science, 2016, 12(6):1165-1177. [31] YI Shuang, HEKI K, QIAN An. Acceleration in the global mean sea level rise:2005-2015[J]. Geophysical Research Letters, 2017, 44(23):11905-11913. [32] CHAMBERS D P, CAZENAVE A, CHAMPOLLION N, et al. Evaluation of the global mean sea level budget between 1993 and 2014[J]. Surveys in Geophysics, 2017, 38(1):309-327. [33] IDIER D, BERTIN X, THOMPSON P, et al. Interactions between mean sea level, tide, surge, waves and flooding:mechanisms and contributions to sea level variations at the coast[J]. Surveys in Geophysics, 2019, 40(6):1603-1630. [34] MU Dapeng, XU Tianhe, XU Guochang. An investigation of mass changes in the Bohai Sea observed by GRACE[J]. Journal of Geodesy, 2020, 94(9):79. DOI:10.1007/s00190-020-01408-1. [35] 闫昊明,李晓静,朱耀仲,等.海平面对大气压变化的空间响应[J].地球物理学报, 2012, 55(3):789-796. YAN Haoming, LI Xiaojing, ZHU Yaozhong, et al. Spatial response of sea level to atmospheric pressure change[J]. Chinese Journal of Geophysics, 2012, 55(3):789-796. [36] MU Dapeng, XU Tianhe, GUAN Meiqian. Sea level instantaneous budget for 2003-2015[J]. Geophysical Journal International, 2022, 229(2):828-837. [37] CHEN Jianli, TAPLEY B, SAVE H, et al. Quantification of ocean mass change using gravity recovery and climate experiment, satellite altimeter, and Argo floats observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(11):10212-10225. [38] YI Shuang, SUN Wenke, HEKI K, et al. An increase in the rate of global mean sea level rise since 2010[J]. Geophysical Research Letters, 2015, 42(10):3998-4006. [39] VISHWAKARMA B D, ROYSTON S, RIVA R E M, et al. Sea level budgets should account for ocean bottom deformation[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086492. DOI:10.1029/2019GL086492. [40] AMIN H, BAGHERBANDI M, SJÖBERG L E. Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005-2016[J]. Advances in Space Research, 2020, 65(8):1922-1940. [41] ROYSTON S, VISHWAKARMA B D, WESTAWAY R, et al. Can we resolve the basin-scale sea level trend budget from GRACE ocean mass?[J]. Journal of Geophysical Research:Oceans, 2020, 125(1):e2019JC015535. DOI:10.1029/2019JC015535. [42] BARNOUD A, PFEFFER J, GUÉROU A, et al. Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016[J]. Geophysical Research Letters, 2021, 48(14):e2021GL092824. DOI:10.1029/2021GL092824. [43] WANG Fengwei, SHEN Yunzhong, CHEN Qiujie, et al. Reduced misclosure of global sea-level budget with updated Tongji-Grace 2018 solution[J]. Scientific Reports, 2021, 11(1):17667. DOI:10.1038/s41598-021-96880-w. [44] 蒋涛,李建成,王正涛,等.联合Jason-1与GRACE卫星数据研究全球海平面变化[J].测绘学报, 2010, 39(2):135-140. JIANG Tao, LI Jiancheng, WANG Zhengtao, et al. Global sea level variations from combined Jason-1 and GRACE data[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2):135-140. [45] 文汉江,李洪超,蔡艳辉,等.联合Argo浮标、卫星测高和GRACE数据研究海平面变化[J].测绘学报, 2012, 41(5):696-702. WEN Hanjiang, LI Hongchao, CAI Yanhui, et al. The study of global sea level change by combining Argo floats data, satellite altimetry and GRACE observations[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):696-702. [46] 冯伟,钟敏,许厚泽.联合卫星测高、卫星重力和海洋浮标资料研究2005-2013年的全球海平面变化[J].地球物理进展, 2014, 29(2):471-477. FENG Wei, ZHONG Min, XU Houze. Global sea level changes estimated from satellite altimetry, satellite gravimetry and Argo data during 2005-2013[J]. Progress in Geophysics, 2014, 29(2):471-477. [47] 张保军,王泽民.联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J].武汉大学学报(信息科学版), 2015, 40(11):1453-1459. ZHANG Baojun, WANG Zemin. Global sea level variations estimated from satellite altimetry, GRACE and oceanographic data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1453-1459. [48] 李杨,郭金运,孙玉,等.联合时变重力数据与测高数据反演全球海平面变化及其分量贡献[J/OL].测绘学报:1-4.[2022-07-14]. https://kns.cnki.net/kcms/detail/11.2089.P.20211227.1604.002.html. LI Yang, GUO Jinyun, SUN Yu, et al. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data[J/OL]. Acta Geodaetica et Cartographica Sinica, 1-4.[2022-07-14]. https://kns.cnki.net/kcms/detail/11.2089.P.20211227.1604.002.html. [49] UEBBING B, KUSCHE J, RIETBROEK R, et al. Processing choices affect ocean mass estimates from GRACE[J]. Journal of Geophysical Research:Oceans, 2019, 124(2):1029-1044. [50] BOENING C, WILLIS J K, LANDERER F W, et al. The 2011 La Niña:so strong, the oceans fell[J]. Geophysical Research Letters, 2012, 39(19):L19602. DOI:10.1029/2012GL053055. [51] 钟玉龙,钟敏,冯伟.近十年全球平均海平面变化成因的卫星重力监测研究以及与ENSO现象的相关分析[J].地球物理学进展, 2016, 31(2):643-648. ZHONG Yulong, ZHONG Min, FENG Wei. Monitoring the cause of global mean sea level with satellite gravity and analyzing the correlation with ENSO in recent decade[J]. Progress in Geophysics, 2016, 31(2):643-648. [52] FASULLO J T, BOENING C, LANDERER F W, et al. Australia's unique influence on global sea level in 2010-2011[J]. Geophysical Research Letters, 2013, 40(16):4368-4373. [53] CAZENAVE A, DIENG H B, MEYSSIGNAC B, et al. The rate of sea-level rise[J]. Nature Climate Change, 2014, 4(5):358-361. [54] CAI Wenju, BORLACE S, LENGAIGNE M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2):111-116. [55] BLAZQUEZ A, MEYSSIGNAC B, LEMOINE J M, et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface:implications for the global water and sea level budgets[J]. Geophysical Journal International, 2018, 215(1):415-430. [56] LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record:GRACE Follow-On instrument and science data performance[J]. Geophysical Research Letters, 2020, 47(12):e2020GL088306. DOI:10.1029/2020GL088306. [57] GARDNER A S, MOHOLDT G, COGLEY J G, et al. A reconciled estimate of glacier contributions to sea level rise:2003 to 2009[J]. Science, 2013, 340(6134):852-857. [58] RIGNOT E, JACOBS S, MOUGINOT J, et al. Ice-shelf melting around Antarctica[J]. Science, 2013, 341(6143):266-270. [59] The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017[J]. Nature, 2018, 558(7709):219-222. [60] The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579(7798):233-239. [61] MORLIGHEM M, WILLIAMS C N, RIGNOT E, et al. BedMachine v3:complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation[J]. Geophysical Research Letters, 2017, 44(21):11051-11061. [62] LUTHCKE S B, ZWALLY H J, ABDALATI W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations[J]. Science, 2006, 314(5803):1286-1289. [63] MU Dapeng, YAN Haoming, FENG Wei, et al. GRACE leakage error correction with regularization technique:case studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017, 208(3):1775-1786. [64] XU Z, SCHRAMA E, VAN DER WAL W. Optimization of regional constraints for estimating the Greenland mass balance with GRACE level-2 data[J]. Geophysical Journal International, 2015, 202(1):381-393. [65] CHEN J L, WILSON C R, BLANKENSHIP D, et al. Accelerated Antarctic ice loss from satellite gravity measurements[J]. Nature Geoscience, 2009, 2(12):859-862. [66] VAN DEN BROEKE M, BAMBER J, ETTEMA J, et al. Partitioning recent Greenland mass loss[J]. Science, 2009, 326(5955):984-986. [67] RIGNOT E, JACOBS S S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines[J]. Science, 2002, 296(5575):2020-2023. [68] HOWAT I M, JOUGHIN I, SCAMBOS T A. Rapid changes in ice discharge from Greenland outlet glaciers[J]. Science, 2007, 315(5818):1559-1561. [69] 朱传东,陆洋,史红岭,等.高亚洲冰川质量变化趋势的卫星重力探测[J].地球物理学报, 2015, 58(3):793-801. ZHU Chuandong, LU Yang, SHI Hongling, et al. Trends of glacial mass changes in High Asia from satellite gravity observations[J]. Chinese Journal of Geophysics, 2015, 58(3):793-801. [70] 卢飞,游为,范东明.基于GRACE的格陵兰冰盖质量变化分析[J].大地测量与地球动力学, 2015, 35(4):640-644. LU Fei, YOU Wei, FAN Dongming. Analysis of Greenland ice mass change based on GRACE[J]. Journal of Geodesy and Geodynamics, 2015, 35(4):640-644. [71] 高春春,陆洋,史红岭,等.基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化[J].地球物理学报, 2019, 62(3):864-882. GAO Chunchun, LU Yang, SHI Hongling, et al. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data[J]. Chinese Journal of Geophysics, 2019, 62(3):864-882. [72] 鞠晓蕾,沈云中,张子占.基于GRACE卫星RL05数据的南极冰盖质量变化分析[J].地球物理学报, 2013, 56(9):2918-2927. JU Xiaolei, SHEN Yunzhong, ZHANG Zizhan. Antarctic ice mass change analysis based on GRACE RL05 data[J]. Chinese Journal of Geophysics, 2013, 56(9):2918-2927. [73] 罗志才,李琼,张坤,等.利用GRACE时变重力场反演南极冰盖的质量变化趋势[J].中国科学:地球科学, 2012, 42(10):1590-1596. LUO Zhicai, LI Qiong, ZHANG Kun, et al. Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field[J]. Science China Earth Sciences, 2012, 42(10):1590-1596. [74] REAGER J T, GARDNER A S, FAMIGLIETTI J S, et al. A decade of sea level rise slowed by climate-driven hydrology[J]. Science, 2016, 351(6274):699-703. [75] CHEN J L, WILSON C R, TAPLEY B D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet[J]. Science, 2006, 313(5795):1958-1960. [76] MATSUO K, HEKI K. Time-variable ice loss in Asian high mountains from satellite gravimetry[J]. Earth and Planetary Science Letters, 2010, 290(1-2):30-36. [77] WU Xiaoping, HEFLIN M B, SCHOTMAN H, et al. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment[J]. Nature Geoscience, 2010, 3(9):642-646. [78] KING M A, BINGHAM R J, MOORE P, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7425):586-589. [79] JACOB T, WAHR J, PFEFFER W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482(7386):514-518. [80] LUTHCKE S B, SABAKA T J, LOOMIS B D, et al. Antarctica, Greenland and gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution[J]. Journal of Glaciology, 2013, 59(216):613-631. [81] JENSEN L, RIETBROEK R, KUSCHE J. Land water contribution to sea level from GRACE and Jason-1measurements[J]. Journal of Geophysical Research:Oceans, 2013, 118(1):212-226. [82] SCHRAMA E J O, WOUTERS B, RIETBROEK R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(7):6048-6066. [83] HARIG C, SIMONS F J. Icemass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago:seasonal cycles and decadal trends[J]. Geophysical Research Letters, 2016, 43(7):3150-3159. [84] CIRACÌ E, VELICOGNA I, SWENSON S. Continuity of the mass loss of the world's glaciers and ice caps from the GRACE and GRACE Follow-On missions[J]. Geophysical Research Letters, 2020, 47(9):e2019GL086926. DOI:10.1029/2019GL086926. [85] VELICOGNA I, MOHAJERANI Y. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions[J]. Geophysical Research Letters, 2020, 47(8):e2020GL087291. DOI:10.1029/2020GL087291. [86] BAUR O, KUHN M, FEATHERSTONE W E. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects[J]. Journal of Geophysical Research, 2009, 114(B6):B06407. DOI:10.1029/2008JB006239. [87] EWERT H, GROH A, DIETRICH R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE[J]. Journal of Geodynamics, 2012, 59-60:111-123. [88] IVINS E R, JAMES T S, WAHR J, et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3126-3141. [89] WHITEHOUSE P L, BENTLY M J, MILNE G A, et al. A new glacial isostatic adjustment model for Antarctica:calibrated and tested using observations of relative sea-level change and present-day uplift rates[J]. Geophysical Journal International, 2012, 190(3):1464-1482. [90] PELTIER W R. Global glacial isostasy and the surface of the Ice-Age Earth:the ICE-5G (VM2) model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:111-149. [91] SCANLON B R, ZHANG Zizhan, SAVE H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):E1080-E1089. [92] 彭鹏,朱耀仲,钟敏,等.全球水质量迁移对海平面空间模式周年变化的影响[J].地球物理学报, 2013, 56(3):824-833. PENG Peng, ZHU Yaozhong, ZHONG Min, et al. Annual sea level fingerprint caused by global water mass transport[J]. Chinese Journal of Geophysics, 2013, 56(3):824-833. [93] ABLAIN M, MEYSSIGNAC B, ZAWADZKI L, et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration[J]. Earth System Science Data, 2019, 11(3):1189-1202. [94] WONG A P S, WIJFFELS S E, RISER S C, et al. Argo data 1999-2019:two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats[J]. Frontiers in Marine Science, 2020, 7:700. DOI:10.3389/fmars.2020.00700. [95] FENG Wei, ZHONG Min, LEMOINE J M, et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4):2110-2118. [96] LYU Kewei, ZHANG Xuebin, CHURCH J A. Projected ocean warming constrained by the ocean observational record[J]. Nature Climate Change, 2021, 11(10):834-839. [97] SHEN Yingchun, YAN Haoming, PENG Peng, et al. Boundary-included enhanced water storage changes inferred by GPS in the pacific rim of the western United States[J]. Remote Sensing, 2020, 12(15):2429. DOI:10.3390/rs12152429. [98] FU Yuning, ARGUS D F, LANDERER F W. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):552-566. [99] HAMMOND W C, BLEWITT G, KREEMER C, et al. GPS imaging of global vertical land motion for studies of sea level rise[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(7):e2021JB022355. DOI:10.1029/2021JB022355. [100] 丁一航,黄丁发,师悦龄,等.利用GPS和GRACE分析四川地表垂向位移变化[J].地球物理学报, 2018, 61(12):4777-4788. DING Yihang, HUANG Dingfa, SHI Yueling, et al. Determination of vertical surface displacements in Sichuan using GPS and GRACE measurements[J]. Chinese Journal of Geophysics, 2018, 61(12):4777-4788. [101] ZHANG Lan, TANG He, SUN Wenke. Comparison of GRACE and GNSS seasonal load displacements considering regional averages and discrete points[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(8):e2021JB021775. DOI:10.1029/2021JB021775. |
[1] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[2] | ZONG Jingwen, LI Houpu, JI Bing, OUYANG Yongzhong. Some numerical quadrature for singular integral of the altimetry gravity in the innermost area [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1308-1319. |
[3] | ZHOU Miao, CHANG Xiaotao, ZHU Guangbin, QU Qingliang, LIU Wei. Analysis of glacier changes in the Nyainqentanglha Mountain based on the combination of satellite gravity and optical remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1331-1337. |
[4] | HU Minzhang, ZHANG Shengjun, JIN Taoyong, WEN Hanjiang, CHU Yonghai, JIANG Weiping, LI Jiancheng. A new generation of global bathymetry model BAT_WHU2020 [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 939-954. |
[5] | ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from Laplace equation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 452-460. |
[6] | ZHAO Hongbin, GU Yanchao, FAN Dongming, QIU Chunhong, SU Chunpeng, FANG Weihao. Seasonal sea level variations in the Red Sea inferred from satellite altimetry, GRACE and temperature and salinity data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1119-1128. |
[7] | GUAN Bin, SUN Zhongmiao, LIU Xiaogang, ZHAI Zhenhe. Feasibility analysis of performance validation for satellite altimeters using tide gauge and deep-ocean bottom pressure recorder [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 161-168. |
[8] | JIA Lulu, WANG Yuebing, LIAN Weiping, XIANG Longwei. Comparison and Analysis of Crustal Vertical Deformation in Mainland China Observed by GPS from CMONOC and GRACE [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 899-906. |
[9] | WANG Hubiao, WANG Yong, CAI Hua, BAO Lifeng. 1'×1' Vertical Deflection and Its Precision Evaluation on China West Pacific Ocean Region [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1073-1079. |
[10] | ZHU Zhu, ZHAO Yanbin, LIAO He, TU Haibo, ZHANG Guowan, WEI Xiaogang. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1088-1097. |
[11] | HE Lin, LI Jiancheng, CHU Yonghai. Evaluation of the Geopotential Value for the Local Vertical Datum of China Using GRACE/GOCE GGMs and GPS/Leveling Data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 815-823. |
[12] | ZHOU Xinghua, FU Yanguang, XU Jun. Progress and Prospects in Developing Marine Vertical Datum [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1770-1777. |
[13] | GUAN Bin, SUN Zhongmiao, LIU Xiaogang, ZHAI Zhenhe. Relative Calibration of Altimeters under Dual-satellite Formation Flying Altimetry Mode [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 44-52. |
[14] | ZHOU Hao, LUO Zhicai, ZHONG Bo, LU Biao. MPI Parallel Algorithm in Satellite Gravity Field Model Inversion on the Basis of Least Square Method [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8): 833-839. |
[15] | PENG Fukai, SHEN Yunzhong. Analysis of EnviSat Altimetric Data around Yangtze Estuary by Waveform Retracking [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 616-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||