Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1294-1305.doi: 10.11947/j.AGCS.2022.20220091
• Geodesy and Navigation • Previous Articles Next Articles
XU Tianhe1, MU Dapeng1, YAN Haoming2, GUO Jinyun3, YIN Peng1
Received:2022-02-14
Revised:2022-04-26
Published:2022-08-13
Supported by:CLC Number:
XU Tianhe, MU Dapeng, YAN Haoming, GUO Jinyun, YIN Peng. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305.
| [1] HAMLINGTON B D, GARDNER A S, IVINS E, et al. Understanding of contemporary regional sea-level change and the implications for the future[J]. Reviews of Geophysics, 2020, 58(3):e2019RG000672. DOI:10.1029/2019RG000672. [2] PROSHUTINSKY A, ASHIK I M, DVORKIN E N, et al. Secular sea level change in the Russian sector of the Arctic Ocean[J]. Journal of Geophysical Research:Oceans, 2004, 109(C3):C03042. DOI:10.1029/2003JC002007. [3] VERMEER M, RAHMSTORF S. Global sea level linked to global temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51):21527-21532. [4] MILNE G A, GEHRELS W R, HUGHES C W, et al. Identifying the causes of sea-level change[J]. Nature Geoscience, 2009, 2(7):471-478. [5] CHURCH J A, WHITE N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4):585-602. [6] WENZEL M, SCHROTER J. Global and regional sea level change during the 20th century[J]. Journal of Geophysical Research:Oceans, 2014, 119(11):7493-7508. [7] CALAFAT F M, CHAMBERS D P, TSIMPLIS M N. On the ability of global sea level reconstructions to determine trends and variability[J]. Journal of Geophysical Research:Oceans, 2014, 119(3):1572-1592. [8] HAY C C, MORROW E, KOPP R E, et al. Probabilistic reanalysis of twentieth-century sea-level rise[J]. Nature, 2015, 517(7535):481-484. [9] NEREM R S, BECKLEY B D, FASULLO J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9):2022-2025. [10] CHEN Xianyao, ZHANG Xuebin, CHURCH J A, et al. The increasing rate of global mean sea-level rise during 1993-2014[J]. Nature Climate Change, 2017, 7(7):492-495. [11] CAZENAVE A, PALANISAMY H, ABLAIN M. Contemporary sea level changes from satellite altimetry:what have we learned?what are the new challenges?[J]. Advances in Space Research, 2018, 62(7):1639-1653. [12] HAMLINGTON B D, FREDERIKSE T, NEREM R S, et al. Investigating the acceleration of regional sea level rise during the satellite altimeter era[J]. Geophysical Research Letters, 2020, 47(5):e2019GL086528. DOI:10.1029/2019GL086528. [13] DECONTO R M, POLLARD, D, ALLEY R B, et al. The Paris Climate Agreement and future sea-level rise from Antarctica[J]. Nature, 2021, 593(7857):83-89. [14] BAMBER J L, OPPENHEIMER M, KOPP R E, et al. Ice sheet contributions to future sea-level rise from structured expert judgment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23):11195-11200. [15] NICHOLLS R J, CAZENAVE A. Sea-level rise and its impact on coastal zones[J]. Science, 2010, 328(5985):1517-1520. [16] RIETBROEK R, BRUNNABEND S E, KUSCHE J, et al. Revisiting the contemporary sea-level budget on global and regional scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1504-1509. [17] WATSON P J. A new perspective on global mean sea level (GMSL) acceleration[J]. Geophysical Research Letters, 2016, 43(12):6478-6484. [18] FREDERIKSE T, LANDERER F, CARON L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821):393-397. [19] DIENG H B, CAZENAVE A, MEYSSIGNAC B, et al. New estimate of the current rate of sea level rise from a sea level budget approach[J]. Geophysical Research Letters, 2017, 44(8):3744-3751. [20] LEULIETTE E W, MILLER L. Closing the sea level rise budget with altimetry, Argo, and GRACE[J]. Geophysical Research Letters, 2009, 36(4):L04608. DOI:10.1029/2008GL036010. [21] CHEN J L, WILSON C R, TAPLEY B D. Contribution of ice sheet and mountain glacier melt to recent sea level rise[J]. Nature Geoscience, 2013, 6(7):549-552. [22] 姚宜斌,杨元喜,孙和平,等.大地测量学科发展现状与趋势[J].测绘学报, 2020, 49(10):1243-1251. DOI:10.11947/j.AGCS.2020.20200358. YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline:progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1243-1251. DOI:10.11947/j.AGCS.2020.20200358. [23] 姜卫平,赵伟,赵倩,等.新一代探测地球重力场的卫星编队[J].测绘学报, 2014, 43(2):111-117. DOI:10.13485/j.cnki.11-2089.2014.0016. JIANG Weiping, ZHAO Wei, ZHAO Qian, et al. Satellite formation for a new gravity field exploration mission[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2):111-117. DOI:10.13485/j.cnki.11-2089.2014.0016. [24] 陈俊勇.重力卫星和测高卫星五年来的进展[J].测绘科学, 2005, 30(5):9-10. CHEN Junyong. Development of gravity and altimeter satellites in the past five years[J]. Science of Surveying and Mapping, 2005, 30(5):9-10. [25] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5):358-369. [26] CHEN Jianli, TAPLEY B, WILSON C, et al. Global ocean mass change from GRACE and GRACE Follow-On and altimeter and Argo measurements[J]. Geophysical Research Letters, 2020, 47(22):e2020GL090656. DOI:10.1029/2020GL090656. [27] RISER S C, FREELAND H J, ROEMMICH D, et al. Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2):145-153. [28] LLOVEL W, WILLIS J K, LANDERER F W, et al. Deep-ocean contribution to sea level and energy budget not detectable over the past decade[J]. Nature Climate Change, 2014, 4(11):1031-1035. [29] MU Dapeng, XU Tianhe, XU Guochang. Detecting coastal ocean mass variations with GRACE mascons[J]. Geophysical Journal International, 2019, 217(3):2071-2080. [30] PIECUCH C G, QUINN K J. El Niño, La Niña, and the global sea level budget[J]. Ocean Science, 2016, 12(6):1165-1177. [31] YI Shuang, HEKI K, QIAN An. Acceleration in the global mean sea level rise:2005-2015[J]. Geophysical Research Letters, 2017, 44(23):11905-11913. [32] CHAMBERS D P, CAZENAVE A, CHAMPOLLION N, et al. Evaluation of the global mean sea level budget between 1993 and 2014[J]. Surveys in Geophysics, 2017, 38(1):309-327. [33] IDIER D, BERTIN X, THOMPSON P, et al. Interactions between mean sea level, tide, surge, waves and flooding:mechanisms and contributions to sea level variations at the coast[J]. Surveys in Geophysics, 2019, 40(6):1603-1630. [34] MU Dapeng, XU Tianhe, XU Guochang. An investigation of mass changes in the Bohai Sea observed by GRACE[J]. Journal of Geodesy, 2020, 94(9):79. DOI:10.1007/s00190-020-01408-1. [35] 闫昊明,李晓静,朱耀仲,等.海平面对大气压变化的空间响应[J].地球物理学报, 2012, 55(3):789-796. YAN Haoming, LI Xiaojing, ZHU Yaozhong, et al. Spatial response of sea level to atmospheric pressure change[J]. Chinese Journal of Geophysics, 2012, 55(3):789-796. [36] MU Dapeng, XU Tianhe, GUAN Meiqian. Sea level instantaneous budget for 2003-2015[J]. Geophysical Journal International, 2022, 229(2):828-837. [37] CHEN Jianli, TAPLEY B, SAVE H, et al. Quantification of ocean mass change using gravity recovery and climate experiment, satellite altimeter, and Argo floats observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(11):10212-10225. [38] YI Shuang, SUN Wenke, HEKI K, et al. An increase in the rate of global mean sea level rise since 2010[J]. Geophysical Research Letters, 2015, 42(10):3998-4006. [39] VISHWAKARMA B D, ROYSTON S, RIVA R E M, et al. Sea level budgets should account for ocean bottom deformation[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086492. DOI:10.1029/2019GL086492. [40] AMIN H, BAGHERBANDI M, SJÖBERG L E. Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005-2016[J]. Advances in Space Research, 2020, 65(8):1922-1940. [41] ROYSTON S, VISHWAKARMA B D, WESTAWAY R, et al. Can we resolve the basin-scale sea level trend budget from GRACE ocean mass?[J]. Journal of Geophysical Research:Oceans, 2020, 125(1):e2019JC015535. DOI:10.1029/2019JC015535. [42] BARNOUD A, PFEFFER J, GUÉROU A, et al. Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016[J]. Geophysical Research Letters, 2021, 48(14):e2021GL092824. DOI:10.1029/2021GL092824. [43] WANG Fengwei, SHEN Yunzhong, CHEN Qiujie, et al. Reduced misclosure of global sea-level budget with updated Tongji-Grace 2018 solution[J]. Scientific Reports, 2021, 11(1):17667. DOI:10.1038/s41598-021-96880-w. [44] 蒋涛,李建成,王正涛,等.联合Jason-1与GRACE卫星数据研究全球海平面变化[J].测绘学报, 2010, 39(2):135-140. JIANG Tao, LI Jiancheng, WANG Zhengtao, et al. Global sea level variations from combined Jason-1 and GRACE data[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2):135-140. [45] 文汉江,李洪超,蔡艳辉,等.联合Argo浮标、卫星测高和GRACE数据研究海平面变化[J].测绘学报, 2012, 41(5):696-702. WEN Hanjiang, LI Hongchao, CAI Yanhui, et al. The study of global sea level change by combining Argo floats data, satellite altimetry and GRACE observations[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):696-702. [46] 冯伟,钟敏,许厚泽.联合卫星测高、卫星重力和海洋浮标资料研究2005-2013年的全球海平面变化[J].地球物理进展, 2014, 29(2):471-477. FENG Wei, ZHONG Min, XU Houze. Global sea level changes estimated from satellite altimetry, satellite gravimetry and Argo data during 2005-2013[J]. Progress in Geophysics, 2014, 29(2):471-477. [47] 张保军,王泽民.联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J].武汉大学学报(信息科学版), 2015, 40(11):1453-1459. ZHANG Baojun, WANG Zemin. Global sea level variations estimated from satellite altimetry, GRACE and oceanographic data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1453-1459. [48] 李杨,郭金运,孙玉,等.联合时变重力数据与测高数据反演全球海平面变化及其分量贡献[J/OL].测绘学报:1-4.[2022-07-14]. https://kns.cnki.net/kcms/detail/11.2089.P.20211227.1604.002.html. LI Yang, GUO Jinyun, SUN Yu, et al. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data[J/OL]. Acta Geodaetica et Cartographica Sinica, 1-4.[2022-07-14]. https://kns.cnki.net/kcms/detail/11.2089.P.20211227.1604.002.html. [49] UEBBING B, KUSCHE J, RIETBROEK R, et al. Processing choices affect ocean mass estimates from GRACE[J]. Journal of Geophysical Research:Oceans, 2019, 124(2):1029-1044. [50] BOENING C, WILLIS J K, LANDERER F W, et al. The 2011 La Niña:so strong, the oceans fell[J]. Geophysical Research Letters, 2012, 39(19):L19602. DOI:10.1029/2012GL053055. [51] 钟玉龙,钟敏,冯伟.近十年全球平均海平面变化成因的卫星重力监测研究以及与ENSO现象的相关分析[J].地球物理学进展, 2016, 31(2):643-648. ZHONG Yulong, ZHONG Min, FENG Wei. Monitoring the cause of global mean sea level with satellite gravity and analyzing the correlation with ENSO in recent decade[J]. Progress in Geophysics, 2016, 31(2):643-648. [52] FASULLO J T, BOENING C, LANDERER F W, et al. Australia's unique influence on global sea level in 2010-2011[J]. Geophysical Research Letters, 2013, 40(16):4368-4373. [53] CAZENAVE A, DIENG H B, MEYSSIGNAC B, et al. The rate of sea-level rise[J]. Nature Climate Change, 2014, 4(5):358-361. [54] CAI Wenju, BORLACE S, LENGAIGNE M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2):111-116. [55] BLAZQUEZ A, MEYSSIGNAC B, LEMOINE J M, et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface:implications for the global water and sea level budgets[J]. Geophysical Journal International, 2018, 215(1):415-430. [56] LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record:GRACE Follow-On instrument and science data performance[J]. Geophysical Research Letters, 2020, 47(12):e2020GL088306. DOI:10.1029/2020GL088306. [57] GARDNER A S, MOHOLDT G, COGLEY J G, et al. A reconciled estimate of glacier contributions to sea level rise:2003 to 2009[J]. Science, 2013, 340(6134):852-857. [58] RIGNOT E, JACOBS S, MOUGINOT J, et al. Ice-shelf melting around Antarctica[J]. Science, 2013, 341(6143):266-270. [59] The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017[J]. Nature, 2018, 558(7709):219-222. [60] The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579(7798):233-239. [61] MORLIGHEM M, WILLIAMS C N, RIGNOT E, et al. BedMachine v3:complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation[J]. Geophysical Research Letters, 2017, 44(21):11051-11061. [62] LUTHCKE S B, ZWALLY H J, ABDALATI W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations[J]. Science, 2006, 314(5803):1286-1289. [63] MU Dapeng, YAN Haoming, FENG Wei, et al. GRACE leakage error correction with regularization technique:case studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017, 208(3):1775-1786. [64] XU Z, SCHRAMA E, VAN DER WAL W. Optimization of regional constraints for estimating the Greenland mass balance with GRACE level-2 data[J]. Geophysical Journal International, 2015, 202(1):381-393. [65] CHEN J L, WILSON C R, BLANKENSHIP D, et al. Accelerated Antarctic ice loss from satellite gravity measurements[J]. Nature Geoscience, 2009, 2(12):859-862. [66] VAN DEN BROEKE M, BAMBER J, ETTEMA J, et al. Partitioning recent Greenland mass loss[J]. Science, 2009, 326(5955):984-986. [67] RIGNOT E, JACOBS S S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines[J]. Science, 2002, 296(5575):2020-2023. [68] HOWAT I M, JOUGHIN I, SCAMBOS T A. Rapid changes in ice discharge from Greenland outlet glaciers[J]. Science, 2007, 315(5818):1559-1561. [69] 朱传东,陆洋,史红岭,等.高亚洲冰川质量变化趋势的卫星重力探测[J].地球物理学报, 2015, 58(3):793-801. ZHU Chuandong, LU Yang, SHI Hongling, et al. Trends of glacial mass changes in High Asia from satellite gravity observations[J]. Chinese Journal of Geophysics, 2015, 58(3):793-801. [70] 卢飞,游为,范东明.基于GRACE的格陵兰冰盖质量变化分析[J].大地测量与地球动力学, 2015, 35(4):640-644. LU Fei, YOU Wei, FAN Dongming. Analysis of Greenland ice mass change based on GRACE[J]. Journal of Geodesy and Geodynamics, 2015, 35(4):640-644. [71] 高春春,陆洋,史红岭,等.基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化[J].地球物理学报, 2019, 62(3):864-882. GAO Chunchun, LU Yang, SHI Hongling, et al. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data[J]. Chinese Journal of Geophysics, 2019, 62(3):864-882. [72] 鞠晓蕾,沈云中,张子占.基于GRACE卫星RL05数据的南极冰盖质量变化分析[J].地球物理学报, 2013, 56(9):2918-2927. JU Xiaolei, SHEN Yunzhong, ZHANG Zizhan. Antarctic ice mass change analysis based on GRACE RL05 data[J]. Chinese Journal of Geophysics, 2013, 56(9):2918-2927. [73] 罗志才,李琼,张坤,等.利用GRACE时变重力场反演南极冰盖的质量变化趋势[J].中国科学:地球科学, 2012, 42(10):1590-1596. LUO Zhicai, LI Qiong, ZHANG Kun, et al. Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field[J]. Science China Earth Sciences, 2012, 42(10):1590-1596. [74] REAGER J T, GARDNER A S, FAMIGLIETTI J S, et al. A decade of sea level rise slowed by climate-driven hydrology[J]. Science, 2016, 351(6274):699-703. [75] CHEN J L, WILSON C R, TAPLEY B D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet[J]. Science, 2006, 313(5795):1958-1960. [76] MATSUO K, HEKI K. Time-variable ice loss in Asian high mountains from satellite gravimetry[J]. Earth and Planetary Science Letters, 2010, 290(1-2):30-36. [77] WU Xiaoping, HEFLIN M B, SCHOTMAN H, et al. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment[J]. Nature Geoscience, 2010, 3(9):642-646. [78] KING M A, BINGHAM R J, MOORE P, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7425):586-589. [79] JACOB T, WAHR J, PFEFFER W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482(7386):514-518. [80] LUTHCKE S B, SABAKA T J, LOOMIS B D, et al. Antarctica, Greenland and gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution[J]. Journal of Glaciology, 2013, 59(216):613-631. [81] JENSEN L, RIETBROEK R, KUSCHE J. Land water contribution to sea level from GRACE and Jason-1measurements[J]. Journal of Geophysical Research:Oceans, 2013, 118(1):212-226. [82] SCHRAMA E J O, WOUTERS B, RIETBROEK R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(7):6048-6066. [83] HARIG C, SIMONS F J. Icemass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago:seasonal cycles and decadal trends[J]. Geophysical Research Letters, 2016, 43(7):3150-3159. [84] CIRACÌ E, VELICOGNA I, SWENSON S. Continuity of the mass loss of the world's glaciers and ice caps from the GRACE and GRACE Follow-On missions[J]. Geophysical Research Letters, 2020, 47(9):e2019GL086926. DOI:10.1029/2019GL086926. [85] VELICOGNA I, MOHAJERANI Y. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions[J]. Geophysical Research Letters, 2020, 47(8):e2020GL087291. DOI:10.1029/2020GL087291. [86] BAUR O, KUHN M, FEATHERSTONE W E. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects[J]. Journal of Geophysical Research, 2009, 114(B6):B06407. DOI:10.1029/2008JB006239. [87] EWERT H, GROH A, DIETRICH R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE[J]. Journal of Geodynamics, 2012, 59-60:111-123. [88] IVINS E R, JAMES T S, WAHR J, et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3126-3141. [89] WHITEHOUSE P L, BENTLY M J, MILNE G A, et al. A new glacial isostatic adjustment model for Antarctica:calibrated and tested using observations of relative sea-level change and present-day uplift rates[J]. Geophysical Journal International, 2012, 190(3):1464-1482. [90] PELTIER W R. Global glacial isostasy and the surface of the Ice-Age Earth:the ICE-5G (VM2) model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:111-149. [91] SCANLON B R, ZHANG Zizhan, SAVE H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):E1080-E1089. [92] 彭鹏,朱耀仲,钟敏,等.全球水质量迁移对海平面空间模式周年变化的影响[J].地球物理学报, 2013, 56(3):824-833. PENG Peng, ZHU Yaozhong, ZHONG Min, et al. Annual sea level fingerprint caused by global water mass transport[J]. Chinese Journal of Geophysics, 2013, 56(3):824-833. [93] ABLAIN M, MEYSSIGNAC B, ZAWADZKI L, et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration[J]. Earth System Science Data, 2019, 11(3):1189-1202. [94] WONG A P S, WIJFFELS S E, RISER S C, et al. Argo data 1999-2019:two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats[J]. Frontiers in Marine Science, 2020, 7:700. DOI:10.3389/fmars.2020.00700. [95] FENG Wei, ZHONG Min, LEMOINE J M, et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4):2110-2118. [96] LYU Kewei, ZHANG Xuebin, CHURCH J A. Projected ocean warming constrained by the ocean observational record[J]. Nature Climate Change, 2021, 11(10):834-839. [97] SHEN Yingchun, YAN Haoming, PENG Peng, et al. Boundary-included enhanced water storage changes inferred by GPS in the pacific rim of the western United States[J]. Remote Sensing, 2020, 12(15):2429. DOI:10.3390/rs12152429. [98] FU Yuning, ARGUS D F, LANDERER F W. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):552-566. [99] HAMMOND W C, BLEWITT G, KREEMER C, et al. GPS imaging of global vertical land motion for studies of sea level rise[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(7):e2021JB022355. DOI:10.1029/2021JB022355. [100] 丁一航,黄丁发,师悦龄,等.利用GPS和GRACE分析四川地表垂向位移变化[J].地球物理学报, 2018, 61(12):4777-4788. DING Yihang, HUANG Dingfa, SHI Yueling, et al. Determination of vertical surface displacements in Sichuan using GPS and GRACE measurements[J]. Chinese Journal of Geophysics, 2018, 61(12):4777-4788. [101] ZHANG Lan, TANG He, SUN Wenke. Comparison of GRACE and GNSS seasonal load displacements considering regional averages and discrete points[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(8):e2021JB021775. DOI:10.1029/2021JB021775. |
| [1] | Xiaodong CHEN, Meng YANG, Yuan YUAN, Wei FENG, Jinway HWANG, Min ZHONG. Evaluation of the accuracy and spatial resolution of SWOT_02 marine gravity model in China's offshore regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1031-1041. |
| [2] | Zhenhe ZHAI, Zhongmiao SUN, Jian MA, Bin GUAN, He HUANG, Mingda OUYANG, Lingyong HUANG, Zhiyong HUANG, Xingchen PAN, Shigeng YUAN, Shengli LIU, Sen LIU. Gravity field inversion from China ocean altimetry tandem satellites data and performance analysis [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 714-724. |
| [3] | SUN Zhongmiao, ZHAI Zhenhe, GUAN Bin, RUAN Rengui, HUANG Lingyong. Preliminary verification of dual-satellite tandem altimetry on board [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 207-216. |
| [4] | GAO Xianwen, JIN Taoyong, LI Jiancheng. An improved retracker considering spatial and temporal characteristics of inland water level changes for SAR altimetry [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 217-230. |
| [5] | LI Qianqian, BAO Lifeng, WANG Yong. Analysis of altimetry-derived sea surface observation anomalies for 2022 eruption of Tonga submarine volcano [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 263-273. |
| [6] | LIU Huanling, YANG Weiran, ZHANG Fang, WEN Hanjiang, HU Minzhang, JIANG Tao, LIN Wenqi, LI Chenxi. Multi-scale analysis of gravity anomaly models in sea area [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 274-285. |
| [7] | Xukang XIE, Wei LI. Water level extraction algorithm based on adaptive weighting and deviation matching of multi-source satellite altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2111-2124. |
| [8] | ZHAO Chuang, JIN Taoyong, QIN Pengbo, YANG Lianjun. An improved multi-surface function method with residual constraint for the fusion of shipborne and satellite altimetry derived gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 605-613. |
| [9] | FAN Diao, LI Shanshan, FENG Jinkai, HUANG Yan, FAN Haopeng, ZHANG Jinhui, LI Xinxing. Applying least square collocation method to predict seafloor topography in the unknown sea area [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2039-2053. |
| [10] | MA Wenjing, ZHOU Hao, HE Peipei, ZHENG Lijun, LUO Zhicai. Analysis of terrestrial water storage variations in Chinese mainland based on HUST-Grace2020 model [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2089-2102. |
| [11] | ZHU Jun, ZHU Lingjie, XING Xuemin, ZHANG Rui, BAO Liang, ZHANG Tengfei, BAO Haodan. Joint estimation method of time-series InSAR deformation and environmental physical parameters for soft clay area over Dongting lake [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2127-2140. |
| [12] | LI Yang, GUO Jinyun, SUN Yu, YUAN Jiajia, CHANG Xiaotao, ZHANG Hongri. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1768-1778. |
| [13] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
| [14] | ZONG Jingwen, LI Houpu, JI Bing, OUYANG Yongzhong. Some numerical quadrature for singular integral of the altimetry gravity in the innermost area [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1308-1319. |
| [15] | ZHOU Miao, CHANG Xiaotao, ZHU Guangbin, QU Qingliang, LIU Wei. Analysis of glacier changes in the Nyainqentanglha Mountain based on the combination of satellite gravity and optical remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1331-1337. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||