[1] 陈杰, 邓敏, 肖鹏峰, 等. 结合支持向量机与粒度计算的高分辨率遥感影像面向对象分类[J]. 测绘学报, 2011, 40(2): 135-141, 147. CHEN Jie, DENG Min, XIAO Pengfeng, et al. Object-oriented classification of high resolution imagery combining support vector machine with granular computing[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 135-141, 147. [2] AWAD M, CHEHDI K, NASRI A. Multicomponent image segmentation using a genetic algorithm and artificial neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 571-575. [3] LALIBERTE A S, FREDRICKSON E L, RANGO A. Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands[J]. Photogrammetric Engineering & Remote Sensing, 2007, 73(2): 197-207. [4] 王猛, 张新长, 王家耀, 等. 结合随机森林面向对象的森林资源分类[J]. 测绘学报, 2020, 49(2): 235-244. DOI: 10.11947/j.AGCS.2020.20190272. WANG Meng, ZHANG Xinchang, WANG Jiayao, et al. Forest resource classification based on random forest and object oriented method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 235-244. DOI: 10.11947/j.AGCS.2020.20190272. [5] DOU Peng, CHEN Yangbo, YUE Haiyun. Remote-sensing imagery classification using multiple classification algorithm-based AdaBoost[J]. International Journal of Remote Sensing, 2018, 39(3): 619-639. [6] 刘帅, 李笑迎, 于梦, 等. 高分辨率遥感图像双解耦语义分割网络模型[J]. 测绘学报, 2023,52(4): 638-647. DOI: 10.11947/j.AGCS.2023.20210455. LIU Shuai, LI Xiaoying, YU Meng, et al. Dual decoupling semantic segmentation model for high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023,52(4): 638-647. DOI: 10.11947/j.AGCS.2023.20210455. [7] ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 114. [8] HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966-5978. [9] XU Zhiyong, ZHANG Weicun, ZHANG Tianxiang, et al. Efficient transformer for remote sensing image segmentation[J]. Remote Sensing, 2021, 13(18): 3585. [10] HONG Danfeng, GAO Lianru, YOKOYA N, et al. More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4340-4354. [11] BENJDIRA B, BAZI Y, KOUBAA A, et al. Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images[J]. Remote Sensing, 2019, 11(11): 1369. [12] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. [13] 刘玮. 面向高分辨率遥感图像分类的域适应算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. LIU Wei. Domain adaptation for high resolution remote sensing image classification[D]. Harbin: Harbin Institute of Technology, 2020. [14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [15] TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: maximizing for domain invariance[EB/OL]. [2022-08-08].https://arxiv.org/abs/1412.3474.pdf. [16] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of 2015 International Conference on Machine Learning. Lille:ICML, 2015: 97-105. [17] SUN Baochen, FENG Jiashi, SAENKO K. Return of frustratingly easy domain adaptation[C]//Proceedings of 2016 AAAI Conference on Artificial Intelligence. New York: ACM Press, 2016: 2058-2065. [18] CHEN Chao, CHEN Zhihong, JIANG Boyuan, et al. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3296-3303. [19] ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (CMD) for domain-invariant representation learning[EB/OL]. [2022-08-08]. https://arxiv.org/abs/1702.08811.pdf. [20] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017: 2223-2232. [21] TASAR O, HAPPY S L, TARABALKA Y, et al. ColorMapGAN: unsupervised domain adaptation for semantic segmentation using color mapping generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7178-7193. [22] ZHAO Yang, GUO Peng, SUN Zihao, et al. ResiDualGAN: resize-residual DualGAN for cross-domain remote sensing images semantic segmentation[EB/OL].[2022-08-08]. https://arxiv.org/abs/2201.11523.pdf. [23] CHEN Y H, CHEN Weiyu, CHEN Yuting, et al. No more discrimination: cross city adaptation of road scene segmenters[C]//Proceeding of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2011-2020. [24] TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7472-7481. [25] WANG Zhonghao, YU Mo, WEI Yunchao, et al. Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle: IEEE, 2020: 12635-12644. [26] XU Qingsong, YUAN Xin, OUYANG Chaojun. Class-aware domain adaptation for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17. [27] CHEN Jie, ZHU Jingru, GUO Ya, et al. Unsupervised domain adaptation for semantic segmentation of high-resolution remote sensing imagery driven by category-certainty attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. [28] COURTY N, FLAMARY R, TUIA D, et al. Optimal transport for domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1853-1865. [29] XIE Yujia, CHEN Minshuo, JIANG Haoming, et al. On scalable and efficient computation of large scale optimal transport[EB/OL].[2022-08-08]. https://arxiv.org/abs/1905.00158.pdf. [30] XU Renjun, LIU P, WANG Liyan, et al. Reliable weighted optimal transport for unsupervised domain adaptation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4394-4403. [31] LI Mengxue, ZHAI Yiming, LUO Youwei, et al. Enhanced transport distance for unsupervised domain adaptation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13936-13944. [32] COURTY N, FLAMARY R, HABRARD A, et al. Joint distribution optimal transportation for domain adaptation[EB/OL].[2022-08-08]. https://arxiv.org/abs/1705.08848.pdf. [33] DAMODARAN B B, KELLENBERGER B, FLAMARY R, et al. DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer, 2018: 467-483. [34] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [35] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [36] VILLANI C. Optimal transport: old and new[M]. Berlin: Springer, 2009. [37] RUBNER Y, TOMASI C, GUIBAS L J. A metric for distributions with applications to image databases[C]//Proceedings of 1998 International Conference on Computer Vision. Bombay:Narosa Publishing House, 1998: 59-66. [38] 刘轲. 基于局部特征匹配的颜色传递方法研究[D]. 赣州: 江西理工大学, 2021. LIU Ke. Research on color transfer method based on local feature matching[D]. Ganzhou: Jiangxi University of Science and Technology, 2021. |