[1] HE H, WANG S, WANG S,et al.A road extraction method for remote sensing image based on encoder-de-coder network[J].Journal of Geodesy and Geoinformation Science, 2020,3(02):16-25. [2] ZUO Z, ZHANG W, ZHANG D. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020,3(3):39-49. [3] WANG Yanjun, LI Shaochun, WANG Mengjie, et al.A simple deep learning network for classification of 3D mobile LiDAR point clouds[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3):49-59. [4] CHEN Chen, LI Zhilin, LI Songnian, et al. From digitalized to intelligentized surveying and mapping: fundamental is-sues and research agenda[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):148-160. [5] 任加新, 刘万增, 李志林, 等. 利用卷积神经网络进行“问题地图” 智能检测[J].武汉大学学报(信息科学版), 2021, 46(4): 570-577. REN Jiaxin, LIU Wanzeng, LI Zhilin, et al. Intelligent detection of “problematic map” using convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. [6] 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3):385-395.DOI: 10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):385-395.DOI: 10.11947/j.AGCS.2018.20170265. [7] 左溪冰, 刘冰, 余旭初, 等. 高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报, 2021, 50(10):1358-1369.DOI: 10.11947/j.AGCS.2021.20200155. ZUO Xibing, LIU Bing, YU Xuchu, et al. Graph convolutional network method for small sample classification of hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1358-1369.DOI: 10.11947/j.AGCS.2021.20200155. [8] 成飞飞, 付志涛, 黄亮, 等. 结合自适应PCNN的非下采样剪切波遥感影像融合[J]. 测绘学报, 2021, 50(10):1380-1389. DOI: 10.11947/j.AGCS.2021.20200589. CHENG Feifei, FU Zhitao, HUANG Liang, et al. Non-subsampled shearlet transform remote sensing image fusion combined with parameter-adaptive PCNN[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1380-1389. DOI: 10.11947/j.AGCS.2021.20200589. [9] 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. [10] 刘万增, 陈军, 任加新, 等. 基于混合智能的地图自动审核技术框架[J]. 武汉大学学报(信息科学版), 2022, 47(12): 2038-2046. LIU Wanzeng, CHEN Jun, REN Jiaxin, et al. Hybrid intelligence-based framework for automatic map inspecting technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2038-2046. [11] 陈军, 刘万增, 武昊, 等. 基础地理知识服务的基本问题与研究方向[J]. 武汉大学学报(信息科学版), 2019, 44(1): 38-47. CHEN Jun, LIU Wanzeng, WU Hao, et al. Basic issues and research agenda of geospatial knowledge service[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 38-47. [12] 刘万增, 陈军, 翟曦, 等. 时空知识中心的研究进展与应用[J]. 测绘学报, 2021, 50(9): 1183-1193. DOI: 10.11947/j.AGCS.2021.20210160. LIU Wanzeng, CHEN Jun, ZHAI Xi, et al. Research progress and application of spatiotemporal knowledge center[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1183-1193.DOI: 10.11947/j.AGCS.2021.20210160. [13] ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[C]//Proceedings of 2018 International Conference on Learning Representations. Stockholm: IEEE, 2018. [14] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. [15] TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL].[2019-12-10]. https://arxiv.org/abs/1905.11946.pdf. [16] 向红梅. 基于地形图数据库的跨比例尺级别缩编更新方法研究[J]. 测绘通报, 2021(2): 153-156, 160. XIANG Hongmei. Research on automatic downsizing and updating of cross scale level based on topographic map database[J]. Bulletin of Surveying and Mapping, 2021(2): 153-156, 160. [17] HEWITT R J, SHADMAN ROODPOSHTI M, BRYAN B A. There's no best model! Addressing limitations of land-use scenario modelling through multi-model ensembles[J].International Journal of Geographical Information Science, 2022, 36(12): 2352-2385. [18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016. [19] TALEBI H, MILANFAR P. Learning to resize images for computer vision tasks[EB/OL].[2021-10-22]. https://arxiv.org/abs/2103.09950.pdf. [20] TOUVRON H, VEDALDI A, DOUZE M, et al. Fixing the train-test resolution discrepancy[EB/OL][2019-11-12].https://arxiv.org/abs/1906.06423.pdf. [21] TOUVRON H, VEDALDI A, DOUZE M, et al. Fixing the train-test resolution discrepancy: fix efficient net[EB/OL].[2020-10-23].https://arxiv.org/abs/2003.08237.pdf. [22] CHU X, CHEN L, CHEN C, et al.Revisiting global statistics aggregation for improving image restoration[EB/OL].[2021-10-20].http://arxiv.org/abs/2112.04491v1. [23] DASARATHY B V, SHEELA B V. A composite classifier system design: concepts and methodology[J]. Proceedings of the IEEE, 1979, 67(5): 708-713. [24] 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6):1082-1092. XU Jiwei,YANG Yun. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(6):1082-1092. [25] 蔡毅, 朱秀芳, 孙章丽, 等. 半监督集成学习综述[J]. 计算机科学, 2017, 44(S1): 7-13. CAI Yi, ZHU Xiufang, SUN Zhangli,et al. Semi-supervised and ensemble learning: a review[J]. Computer Science, 2017, 44(S1): 7-13. [26] 张春霞, 张讲社. 选择性集成学习算法综述[J]. 计算机学报, 2011, 34(8):1399-1410. ZHANG Chunxia, ZHANG Jiangshe. A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011, 34(8):1399-1410. [27] HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. [28] DIETTERICH T G. Ensemble methods in machine learning[C]//Proceedings of 2000 Multiple Classifier Systems Conference. Berlin: Springer, 2000: 1-15. [29] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of 2010 COMPSTAT Conference. Heidelberg: Springer, 2010: 177-186. |