[1] CHANDER G, HEWISON T J, FOX N, et al. Overview of intercalibration of satellite instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1056-1080. [2] KIEFFER H H, WILDEY R L. Establishing the moon as a spectral radiance standard[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(2):360. [3] KIEFFER H H, STONE T C. The spectral irradiance of the Moon[J]. The Astronomical Journal, 2005, 129(6):2887-2901. [4] 张璐, 张鹏, 胡秀清, 等. 月球辐射照度模型比对及地基对月观测验证[J]. 遥感学报, 2017, 21(6):864-870. ZHANG Lu, ZHANG Peng, HU Xiuqing, et al. Comparison of lunar irradiance models and validation of lunar observation on Earth[J]. Journal of Remote Sensing, 2017, 21(6):864-870. [5] 张过, 蒋永华, 李立涛, 等. 高分辨率光学/SAR卫星几何辐射定标研究进展[J]. 测绘学报, 2019, 48(12):1604-1623. DOI:10.11947/j.AGCS.2019.20190469. ZHANG Guo, JIANG Yonghua, LI Litao, et al. Research progress of high-resolution optical/SAR satellite geometric radiometric calibration[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1604-1623. DOI:10.11947/j.AGCS.2019.20190469. [6] LACHERADE S, AZNAY O, FOUGNIE B, et al. POLO:a unique dataset to derive the phase angle dependence of the Moon irradiance[C]//Proceedings of 2014 Conference on Sensors, Systems, and Next-Generation Satellites XVIII. Amsterdam:SPIE, 2014:264-272. [7] BARRETO A, ROMAN R, CUEVAS E, et al. Assessment of nocturnal aerosol optical depth from lunar photometry at the Izana high mountain observatory[J]. Atmospheric Measurement Techniques, 2017, 10(8):3007-3019. [8] PIETERS C M. The Moon as a spectral calibration standard enabled by lunar samples:the clementine example[C]//Proceedings of 1999 Workshop on New Views of the Moon II:Understanding the Moon Through the Integration of Diverse Datasets. Flagstaff:[s.n.]. 1999:47-48. [9] YAMAMOTO S, MATSUNAGA T, OGAWA Y, et al. Preflight and in-flight calibration of the spectral profiler on board SELENE (Kaguya)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4660-4676. [10] WU Yunzhao, WANG Zhenchao, CAI Wei, et al. The absolute reflectance and new calibration site of the moon[J]. The Astronomical Journal, 2018, 155(5):213. [11] SHANG Jian, YANG Lei, HUANG Pan, et al. Instrument observation strategy for a new generation of three-axis-stabilized geostationary meteorological satellites from China[J]. Geoscientific Instrumentation, Methods and Data Systems, 2019, 8(2):161-175. [12] 朱军, 李永昌, 白照广, 等. 低轨高分辨率遥感卫星姿态机动对月定标方法[J]. 光学精密工程, 2020, 28(9):1913-1923. ZHU Jun, LI Yongchang, BAI Zhaoguang, et al. Lunar calibration method through attitude maneuver of low-earth-orbit and high-resolution remote sensing satellites[J]. Optics and Precision Engineering, 2020, 28(9):1913-1923. [13] 贺小军, 李竺强, 秦小宝, 等. 吉林一号光谱卫星技术创新与应用成果[J]. 卫星应用, 2020(3):18-26. HE Xiaojun, LI Zhuqiang, QIN Xiaobao, et al. Technological innovation and application achievements of Jilin-1 spectral satellite[J]. Satellite Application, 2020(3):18-26. [14] PI Yingdong, XIE Baorong, YANG Bo, et al. On-orbit geometric calibration of linear push-broom optical satellite based on sparse GCPs[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):64-75. [15] JING Zhenhua, HU Xiuqing, LI Shuang, et al. Geolocation of lunar observations with JiLin-1 high-resolution optical sensor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-13. [16] 龚健雅, 王密, 杨博. 高分辨率光学卫星遥感影像高精度无地面控制精确处理的理论与方法[J]. 测绘学报, 2017, 46(10):1255-1261.DOI:10.11947/j.AGCS.2017.20170307.GONG Jianya, WANG Mi, YANG Bo. High-precision geometric processing theory and method of high-resolution optical remote sensing satellite imagery without GCP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1255-1261.DOI:10.11947/j.AGCS.2017.20170307. [17] SUN Junqiang, XIONG Xiaoxiong, BARNES W L, et al. MODIS reflective solar bands on-orbit lunar calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):2383-2393. [18] TRUJILLO-PINO A, KRISSIAN K, ALEMÁN-FLORES M, et al. Accurate subpixel edge location based on partial area effect[J]. Image and Vision Computing, 2013, 31(1):72-90. [19] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//Proceedings of the 6th International Conference on Computer Vision.Washington DC:IEEE Computer Society, 1998:839-846. [20] PARK R S, FOLKNER W M, WILLIAMS J G, et al. The JPL planetary and lunar ephemerides DE440 and DE441[J]. The Astronomical Journal, 2021, 161(3):105. [21] ARCHINAL B A, ACTON C H, A'HEARN M F, et al. Report of the IAU working group on cartographic coordinates and rotational elements:2015[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130:1-46. [22] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [23] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [24] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona:IEEE, 2011:2564-2571. [25] JING Zhenhua, LI Shuang, HU Xiuqing, et al. Sub-pixel accuracy evaluation of FY-3D MERSI-2 geolocation based on OLI reference imagery[J]. International Journal of Remote Sensing, 2021, 42(19):7215-7238. [26] LIU Feitony, TING Kaiming, ZHOU Zhihua. Isolation forest[C]//Proceedings of 2008 Eighth IEEE International Conference on Data Mining. Pisa:IEEE, 2008:413-422. [27] LIU F T, TING Kaiming, ZHOU Zhihua. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 6(1):1-39. [28] PIETERS C M, HEAD J W, ISAACSON P, et al. Lunar international science coordination/calibration targets (L-ISCT)[J]. Advances in Space Research, 2008, 42(2):248-258. |