[1] HONG Danfeng, HU Jingliang, YAO Jing, et al. Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model[J]. ISPRS Journal of Photogrammetry and Remote Sensing:Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 2021, 178:68-80. [2] LEI Lei, WANG Xinyu, ZHONG Yanfei, et al. DOCC:deep one-class crop classification via positive and unlabeled learning for multi-modal satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105:102598. [3] 张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7):1317-1337.DOI:10.11947/j.AGCS.2022.20220171. ZHANG Liangpei, HE Jiang, YANG Qianqian, et al. Data-driven multi-source remote sensing data fusion:progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1317-1337.DOI:10.11947/j.AGCS.2022.20220171. [4] 施蓓琦, 刘春, 孙伟伟, 等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报, 2013, 42(3):351-358, 366. SHI Beiqi, LIU Chun, SUN Weiwei, et al. Sparse nonnegative matrix factorization for hyperspectral optimal band selection[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):351-358, 366. [5] 余岸竹, 刘冰, 邢志鹏, 等. 面向高光谱影像分类的显著性特征提取方法[J]. 测绘学报, 2019, 48(8):985-995.DOI:10.11947/j.AGCS.2019.20180499. YU Anzhu, LIU Bing, XING Zhipeng, et al. Salient feature extraction method for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):985-995. DOI:10.11947/j.AGCS.2019.20180499. [6] 张良培, 李家艺. 高光谱图像稀疏信息处理综述与展望[J]. 遥感学报, 2016, 20(5):1091-1101. ZHANG Liangpei, LI Jiayi. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5):1091-1101. [7] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [8] LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2017, 26(10):4843-4855. [9] WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):46-62. [10] MOU Lichao, GHAMISIP, ZHU Xiaoxiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [11] HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer:rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5518615. [12] HANG Renlong, LI Zhu, LIU Qingshan, et al. Hyperspectral image classification with attention-aided CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2281-2293. [13] YUE Jun, FANG Leyuan, RAHMANI H, et al. Self-supervised learning with adaptive distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5501813. [14] YANG Lina, ZHANG Fengqi, WANGP S P, et al. Multi-scale spatial-spectral fusion based on multi-input fusion calculation and coordinate attention for hyperspectral image classification[J]. Pattern Recognition, 2022, 122:108348. [15] XUE Zhixiang, YU Xuchu, TAN Xiong, et al. Multiscale deep learning network with self-calibrated convolution for hyperspectral and LiDAR data collaborative classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5514116. [16] LI Wei, WANG Junjie, GAO Yunhao, et al. Graph-feature-enhanced selective assignment network for hyperspectral and multispectral data classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2022, 60:5526914. [17] WANG Junjie, LI Wei, GAO Yunhao, et al. Hyperspectral and SAR image classification via multiscale interactive fusion network[J]. IEEE Transactions on Neural Networks and Learning Systems,2023, 34(12):10823-10837. [18] 张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7):1398-1415.DOI:10.11947/j.AGCS.2022.20220279. ZHANG Bing, YANG Xiaomei, GAO Lianru, et al. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1398-1415.DOI:10.11947/j.AGCS.2022.20220279. [19] 左溪冰, 刘冰, 余旭初, 等. 高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报, 2021, 50(10):1358-1369. DOI:10.11947/j.AGCS.2021.20200155. ZUO Xibing, LIU Bing, YU Xuchu, et al. Graph convolutional network method for small sample classification of hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1358-1369.DOI:10.11947/j.AGCS.2021.20200155. [20] ZHU Lin, CHEN Yushi, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5046-5063. [21] 刘冰, 左溪冰, 谭熊, 等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报, 2020, 49(10):1331-1342.DOI:10.11947/j.AGCS.2020.20190486. LIU Bing, ZUO Xibing, TAN Xiong, et al. A deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1331-1342. DOI:10.11947/j.AGCS.2020.20190486. [22] 陶超, 阴紫薇, 朱庆, 等. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089. TAO Chao, YIN Ziwei, ZHU Qing, et al. Remote sensing image intelligent interpretation:from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089. [23] ZHU Mingzhen, FAN Jiayuan, YANG Qihang, et al. SC-EADNet:a self-supervised contrastive efficient asymmetric dilated network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5519517. [24] LI Xiaomin, SHI Daqian, DIAO Xiaolei, et al. SCL-MLNet:boosting few-shot remote sensing scene classification via self-supervised contrastive learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5801112. [25] ZHANG Lamei, ZHANG Siyu, ZOU Bin, et al. Unsupervised deep representation learning and few-shot classification of PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5100316. [26] CHEN Yuxing, BRUZZONE L. Self-supervised change detection in multiview remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5402812. [27] XUE Zhixiang, YU Xuchu, YU Anzhu, et al. Self-supervised feature learning for multimodal remote sensing image land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1809, 60:5533815. [28] HE Kaiming, CHEN Xinlei, XIE Saining, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans:IEEE, 2022:15979-15988. [29] XIE Zhenda, ZHANG Zheng, CAO Yue, et al. SimMIM:a simple framework for masked image modeling[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans:IEEE, 2022:9643-9653. [30] FEICHTENHOFER C, FAN Haoqi, LI Yanghao, et al. Masked autoencoders as spatiotemporal learners[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New Orleans:ACM Press, 2022:35946-35958. [31] BACHMANNR, MIZRAHI D, ATANOV A, et al. MultiMAE:multi-modal multi-task masked autoencoders[C]//Proceedigns of 2022 European Conference on Computer Vision. Cham:Springer, 2022:348-367. [32] XUE Zhixiang, LIU Bing, YU Anzhu, et al. Self-supervised feature representation and few-shot land cover classification of multimodal remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-118. [33] MELGANIF, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790. [34] BRUZZONEL, CHI M, MARCONCINI M. A novel transductive SVM for semisupervised classification of remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3363-3373. [35] HONG Danfeng, WU Xin, GHAMISI P, et al. Invariant attribute profiles:a spatial-frequency joint feature extractor for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):3791-3808. [36] XU Yonghao, ZHANG Liangpei, DU Bo, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5893-5909. [37] WANG Di, DU Bo, ZHANG Liangpei, et al. Adaptive spectral-spatial multiscale contextual feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2461-2477. [38] YANG Yi, ZHU Daoye, QU Tengteng, et al. Single-stream CNN with learnable architecture for multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5409218. [39] LIU Bing, YU Anzhu, YU Xuchu, et al. Deep multiview learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7758-7772. |