Acta Geodaetica et Cartographica Sinica ›› 2026, Vol. 55 ›› Issue (1): 1-9.
• Review •
Yuanxi YANG1,2(
), Xia REN1,2, Qiang ZHANG3,4, Mingqiang HOU5, Dingbang XIAO6, Lingxiao ZHU6
Received:2025-10-19
Revised:2025-12-15
Published:2026-02-13
About author:YANG Yuanxi (1956—), male, PhD, researcher, academician of Chinese Academy of Science, majors in dynamic geodetic data and satellite navigation data processing. E-mail: yuanxi_yang@163.com
Supported by:CLC Number:
Yuanxi YANG, Xia REN, Qiang ZHANG, Mingqiang HOU, Dingbang XIAO, Lingxiao ZHU. The development and key technologies of quantum PNT[J]. Acta Geodaetica et Cartographica Sinica, 2026, 55(1): 1-9.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] | MCNEFF J. Changing the game changer, the way ahead for military PNT[EB/OL]. (2010-10-25) [2022-6-20]. https://insidegnss.com/military-pnt-the-way-ahead. |
| [2] | United States National Security Space Office. National positioning, navigation, and timing architecture study final report[EB/OL]. [2022-01-31]. https://rosap.ntl.bts.gov/view/dot/34816. |
| [3] | United States National Security Space Office. National positioning, navigation, and timing architecture: implementation plan[EB/OL]. [2022-01-31]. https://rosap.ntl.bts.gov/view/dot/18293. |
| [4] | The National Science and Technology Council. National research and development plan for positioning navigation, and timing resilience[EB/OL]. [2022-01-31]. https://www.whitehouse.gov/wp-content/uploads/2021/08/Position_Navigation_Timing_RD_Plan-August-2021.Pdf. |
| [5] | KELLEY M. Defense primer: quantum technology[EB/OL]. [2025-09-30]. https://www.congress.gov/crs-product/IF11836. |
| [6] |
杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. DOI: .
doi: 10.11947/j.AGCS.2016.20160127 |
|
YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510. DOI: .
doi: 10.11947/j.AGCS.2016.20160127 |
|
| [7] | YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 1-7. |
| [8] |
杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8): 1006-1012. DOI: .
doi: 10.11947/j.AGCS.2021.20210051 |
|
YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1006-1012. DOI: .
doi: 10.11947/j.AGCS.2021.20210051 |
|
| [9] | YANG Yuanxi, REN Xia, JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 66(5): 929-938. |
| [10] | YANG Yuanxi, YAO Zheng, MAO Yue, et al. Resilient satellite-based PNT system design and key technologies[J]. Science China Earth Sciences, 2025, 68(3): 669-682. |
| [11] | REN Xia, YANG Yuanxi. Development of comprehensive PNT and resilient PNT[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 1-8. |
| [12] | BATTELIER B, BARRETT B, FOUCHÉ L, et al. Development of compact cold-atom sensors for inertial navigation[C]//Proceedings of 2016 Quantum Optics. Brussels: SPIE, 2016: 990004. |
| [13] | 严吉中, 李攀, 刘元正. 原子陀螺基本概念及发展趋势分析[J]. 压电与声光, 2015, 37(5): 810-817. |
| YAN Jizhong, LI Pan, LIU Yuanzheng. Analysis on the basic concept and the development tendency of atomic gyroscopes[J]. Piezoelectrics & Acoustooptics, 2015, 37(5): 810-817. | |
| [14] | MARSHALL M C, CASTILLO D A R, ARTHUR-DWORSCHACK W J, et al. High-stability single-ion clock with 5.5×10-19 systematic uncertainty[J]. Physical Review Letters, 2025, 135(3): 033201. |
| [15] | Top secret lab develops atomic clock using quantum technology[EB/OL]. [2025-10-04]. https://www.gov.uk/government/news/topsecret-lab-develops-atomic-clock-using-quantum-technology. |
| [16] | 谭立龙, 张彦涛, 王鹏, 等. 原子干涉重力仪测量原理与发展现状[J]. 地球物理学进展, 2020, 35(4): 1310-1316. |
| TAN Lilong, ZHANG Yantao, WANG Peng, et al. Measurement principle and development status of atomic interference gravimeter[J]. Progress in Geophysics, 2020, 35(4): 1310-1316. | |
| [17] | SCHMIDT M, SENGER A, HAUTH M, et al. A mobile high-precision absolute gravimeter based on atom interferometry[J]. Gyroscopy and Navigation, 2011, 2(3): 170-177. |
| [18] | FREIER C, HAUTH M, SCHKOLNIK V, et al. Mobile quantum gravity sensor with unprecedented stability[J]. Journal of Physics: Conference Series, 2016, 723(1): 012050. |
| [19] | KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599. |
| [20] | PAONE D. Nanoscale magnetic resonance spectroscopy with nitrogen-vacancy centers in diamond[D]. Stuttgart: University Stuttgart, 2021. |
| [21] | RONDIN L, TETIENNE J P, HINGANT T, et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 2014, 77(5): 056503. |
| [22] | MURADOGLU M, JOHNSSON M T, WILSON N M, et al. Quantum-assured magnetic navigation achieves positioning accuracy better than a strategic-grade INS in airborne and ground-based field trials[EB/OL]. [2025-10-04]. https://arxiv.org/abs/2504.08167. |
| [23] | HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610. |
| [24] | DUAN Xiaochun, DENG Xiaobing, ZHOU Minkang, et al. Test of the universality of free fall with atoms in different spin orientations[J]. Physical Review Letters, 2016, 117(2): 023001. |
| [25] | LI Chenyang, CHEN Luokan, YANG Xuan, et al. Drift-free continuous gravity measurement and application analysis of a high-precision atom gravimeter[J]. Physical Review Applied, 2025, 24(1): 014045. |
| [26] | NEWELL D. CCM. G-K2.2023: key comparison and additional comparison[EB/OL]. [2025-10-04]. https://www.bipm.org/documents/d/guest/ccm-g-k2-2023. |
| [27] | 白金海, 马慧娟, 胡栋, 等. 冷原子重力仪研究进展综述[J]. 宇航计测技术, 2023, 43(5): 1-10. |
| BAI Jinhai, MA Huijuan, HU Dong, et al. Review of research advance on cold-atom gravimeter[J]. Journal of Astronautic Metrology and Measurement, 2023, 43(5): 1-10. | |
| [28] | 张旭, 颜树华, 李期学, 等. 基于车载原子干涉仪的野外流动重力测量[J]. 仪器仪表学报, 2023, 44(9): 96-103. |
| ZHANG Xu, YAN Shuhua, LI Qixue, et al. Mobile gravity surveys in the field based on vehicle-mounted atom interferometer[J]. Chinese Journal of Scientific Instrument, 2023, 44(9): 96-103. | |
| [29] | MAO Dekai, DENG Xiaobing, LUO Huaqing, et al. A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant[J]. The Review of Scientific Instruments, 2021, 92(5): 053202. |
| [30] | 宋宏伟. 基于冷原子干涉仪的重力梯度精密测量研究[D]. 武汉: 华中科技大学, 2017. |
| SONG Hongwei. Precise measurement of gravity gradient based on the cold atom interferometer[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [31] | LYU Wei, ZHONG Jiaqi, ZHANG Xiaowei, et al. Compact high-resolution absolute-gravity gradiometer based on atom interferometers[J]. Physical Review Applied, 2022, 18(5): 054091. |
| [32] | 徐炜豪, 吕伟, 仲嘉琪, 等. 原子干涉重力梯度仪发展现状与分析[J]. 导航与控制, 2022, 21(5): 80-90, 65. |
| XU Weihao, LÜ Wei, ZHONG Jiaqi, et al. Development status and analysis of gravity gradiometer based on atom interferometer[J]. Navigation and Control, 2022, 21(5): 80-90, 65. | |
| [33] | XU W, LÜ W, ZHONG J, et al. Development status and analysis of gravity gradiometer based on atom interferometer[J]. Navigation and Control, 2022, 21(5/6): 80-90. |
| [34] | 杨公鼎, 翁堪兴, 吴彬, 等. 量子重力梯度仪研究进展[J]. 导航定位与授时, 2021, 8(2): 18-29. |
| YANG Gongding, WENG Kanxing, WU Bin, et al. Research progress of quantum gravity gradiometer[J]. Navigation Positioning and Timing, 2021, 8(2): 18-29. | |
| [35] | SONG Hongwei, ZHONG Jiaqi, CHEN Xi, et al. Normalized detection by using the blow-away signal in cold atom interferometry[J]. Optics Express, 2016, 24(25): 28392-28399. |
| [36] | 孙兵锋, 安芳芳, 王植彬, 等. 铯光泵原子磁强计研制进展[J]. 导航定位与授时, 2017, 4(5): 65-69. |
| SUN Bingfeng, AN Fangfang, WANG Zhibin, et al. Development of an optically pumped cesium atomic magnetometer[J]. Navigation Positioning and Timing, 2017, 4(5): 65-69. | |
| [37] | 骆曼箬, 李绍良, 黄艺明, 等. 原子陀螺研究进展及展望[J]. 测控技术, 2023, 42(10): 1-10. |
| LUO Manruo, LI Shaoliang, HUANG Yiming, et al. Review and prospect of atomic gyroscope development[J]. Measurement & Control Technology, 2023, 42(10): 1-10. | |
| [38] | 刘院省, 阚宝玺, 石猛, 等. 原子陀螺仪技术研究进展[C]//第四届航天电子战略研究论坛论文集(新型惯性器件专刊). 北京: 北京航天控制仪器研究所中国航天科技集团有限公司量子工程研究中心, 2018: 11-17, 23. |
| LIU Yuansheng, KAN Baoxi, SHI Meng, et al. Research progress of atomic gyroscope technology[C]//Proceedings of the 4th Aerospace Electronics Strategic Research Forum (Special Issue on New Inertial Devices). Beijing: Beijing Aerospace Control Instrument Institute, Quantum Engineering Research Center of China Aerospace Science and Technology Corporation.2018: 11-17, 23. | |
| [39] | LI Jinting, CHEN Xi, ZHANG Danfang, et al. Realization of a cold atom gyroscope in space[J]. National Science Review, 2025, 12(4): nwaf012. |
| [40] | HE Meng, CHEN Xi, FANG Jie, et al. The space cold atom interferometer for testing the equivalence principle in the China Space Station[J]. NPJ Microgravity, 2023, 9(1): 58. |
| [41] | 王安琪, 孟至欣, 李营营, 等. 连续冷原子束干涉陀螺仪研究进展[J]. 导航定位与授时, 2017, 4(1): 77-84. |
| WANG Anqi, MENG Zhixin, LI Yingying, et al. Research progress in a continuous cold atomic beam interferometer gyroscope[J]. Navigation Positioning and Timing, 2017, 4(1): 77-84. | |
| [42] | MENG Zhixin, YAN Peiqiang, WANG Shengzhe, et al. Closed-loop dual-atom-interferometer inertial sensor with continuous cold atomic beams[J]. Physical Review Applied, 2024, 21(3): 034050. |
| [43] | 张伟佳, 范文峰, 范时秒, 等. 原子自旋惯性测量的偏振误差分析及抑制方法[J]. 中国激光, 2022, 49(19): 139-145. |
| ZHANG Weijia, FAN Wenfeng, FAN Shimiao, et al. Analysis and suppression of polarization error in atomic spin inertial measurement[J]. Chinese Journal of Lasers, 2022, 49(19): 139-145. | |
| [44] | LIU Zijie, WANG Zhiyang, QIN Xiaomin, et al. Turn-key Voigt optical frequency standard[J]. Photonics Research, 2025, 13(4): 1083-1093. |
| [45] | ZHANG Xiangpeng, ZHANG Xuguang, CHEN Yujun, et al. Microcomb-synchronized optoelectronics[J]. Nature Electronics, 2025, 8(4): 322-330. |
| [46] | LI Jie, CUI Xingyang, JIA Zhipeng, et al. A strontium lattice clock with both stability and uncertainty below 5×10-18[J]. Metrologia, 2024, 61(1): 015006. |
| [47] | LU Xiaotong, GUO Feng, LIU Yanyan, et al. NTSC SrII optical lattice clock with uncertainty of 2×10-18[J]. Metrologia, 2025, 62(3): 035007. |
| [48] | SHEN Qi, GUAN Jianyu, REN Jigang, et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 2022, 610(7933): 661-666. |
| [49] | CHEN Yanwei, LIAN Mengzhe, HAN Jinjian, et al. Absolute ranging over 113 km with nanometer precision[J]. National Science Review, 2025, 12(11): nwaf352. |
| [1] | Bofeng LI, Long CHEN, Leitong YUAN. A high-precision deformation monitoring method with GNSS multi-baseline solutions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2116-2128. |
| [2] | Tao GENG, Qiang LI, Lingyue CHENG, Jingnan LIU. The correction method of relativistic effects for GNSS and LEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2129-2141. |
| [3] | Shoujian ZHANG, Xinyun CAO, Yulong GE, Fei SHEN. Yaw attitude modeling of GLONASS-K and GLONASS-M+ satellites and its impact on satellite clock estimation and precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2142-2152. |
| [4] | Jian CHEN, Jiahui WANG, Xingwang ZHAO, Chao LIU, Chunyang LIU, Xuexiang YU. Single-epoch RTK positioning optimization method based on BDS-3/Galileo multi-frequency ionosphere-reduced combinations [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2153-2167. |
| [5] | Xinrui LI, Xuanyu QU, Qin ZHANG, Bao SHU, Lingen MENG, Hao XU, Shuangcheng ZHANG, Guanwen HUANG, Hanwen WU, Li WANG. A data-driven multipath error mitigation method for PPP-RTK and its application in deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2168-2181. |
| [6] | Jiaxin GAO, Xin SUI, Changqiang WANG, Aigong XU, Zhengxu SHI. Loop closure detection method for LiDAR SLAM supported by stable static point cloud clusters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2194-2205. |
| [7] | Yupeng GU, Wanke LIU, Xiaohong ZHANG, Jie HU, Shujie HU, Weihao LEI, Kai ZHENG. Neural network-based GNSS stochastic model generation method by fisheye images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2206-2218. |
| [8] | Zhijian CHEN. Research on LiDAR SLAM/INS/UWB multisource information fusion positioning theory and method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2290-2290. |
| [9] | Weilong RAO. Study on mass migration and crustal deformation of the Qinghai-Xizang Plateau based on GRACE time-variable gravity [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2291-2291. |
| [10] | Liu YANG. Research on the key models of atmospheric water vapor inversion using precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2294-2294. |
| [11] | Ji QI. Foundation model for visible remote sensing image interpret guided by generalized supervisory signal [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2296-2296. |
| [12] | Shuren GUO, Hongliang CAI, Weiguang GAO, Wei ZHOU, Changjiang GENG, Gang LI, Ming DONG, Chengeng SU, Kun JIANG, Yinan MENG, Lei CHEN, Junyang PAN, Kai LI, Qifen LI, Xiaomei TANG, Shuangna ZHANG, Xiaogong HU. A novel architecture of global navigation satellite system for accurate and trusted PNT services [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1934-1953. |
| [13] | Yuanyuan GU, Xu YAO, Lu AN, Gang QIAO, Tong HAO. Analysis and evaluation of route roughness along the CHINARE inland traverse based on high-precision dynamic GNSS data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1968-1979. |
| [14] | Hanyun SONG, Xin LI, Guanwen HUANG, Hang LI. Refinement of UAV barometer altimetry model and GNSS/SINS integrated positioning enhancement [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1980-1991. |
| [15] | Bo LI. BDS-3/GNSS PPP-RTK augmented products estimation and credible positioning methods [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2097-2097. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||