[1] YANG Guopeng, YU Xuchu, FENG Wufa, et al. The Development and Application of Hyperspectral RS Technology[J]. Bulletin of Surveying and Mapping, 2008(10):1-4.(杨国鹏, 余旭初, 冯伍法, 等. 高光谱遥感技术的发展与应用现状[J]. 测绘通报, 2008(10):1-4.) [2] TAN Xiong, YU Xuchu, ZHANG Pengqiang, et al. A Classification Algorithm for Hyperspectral Images Based on Fuzzy Mixed Pixel Decomposition[J]. Journal of Geomatics Science and Technology, 2013, 30(3):279-283.(谭熊, 余旭初, 张鹏强, 等. 一种基于模糊混合像元分解的高光谱影像分类方法[J]. 测绘科学技术学报, 2013, 30(3):279-283.) [3] YU Xuchu, FENG Wufa, YANG Guopeng, et al. Analysis and Application for Hyerspectral Imagery[M]. Beijing:Science Press, 2013.(余旭初, 冯伍法, 杨国鹏, 等. 高光谱影像分析与应用[M]. 北京:科学出版社, 2013.) [4] TAN Xiong. Research on Classification Techniques for Hyperspectral Imagery Based on Combined Spectral and Spatial Features[D]. Zhengzhou:Information Engineering University, 2014.(谭熊. 联合光谱和空间特征的高光谱影像分类技术研究[D]. 郑州:信息工程大学, 2014.) [5] SUN Weiwei. Theory and Methods of Dimensionality Reduction Using Manifold Learning for Hyperspectral Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):439.(孙伟伟. 基于流形学习的高光谱影像降维理论与方法研究[J]. 测绘学报, 2014, 43(4):439.) [6] SHI Qian, DU Bo, ZHANG Liangpei. A Dimensionality Reduction Method for Hyperspectral Imagery Based on Local Discriminative Tangent Space Alignment[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):417-420.(石茜, 杜博, 张良培. 一种基于局部判别正切空间排列的高光谱遥感影像降维方法[J]. 测绘学报, 2012, 41(3):417-420.) [7] TAN Kun, DU Peijun. Wavelet Support Vector Machines Based on Reproducing Kernel Hilbert Space for Hyperspectral Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):142-147.(谭琨, 杜培军. 基于再生核Hilbert空间的小波核函数支持向量机的高光谱遥感影像分类[J]. 测绘学报, 2011, 40(2):142-147.) [8] ZHANG Lei, SHAO Zhenfeng, ZHOU Xiran, et al. Semi-supervised Collaborative Classification for Hyperspectral Remote Sensing Image with Combination of Cluster Feature and SVM[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):855-861.(张磊, 邵振峰, 周熙然, 等. 聚类特征和SVM组合的高光谱影像半监督协同分类[J]. 测绘学报, 2014, 43(8):855-861.) [9] YANG Guopeng, YU Xuchu, ZHOU Xin, et al. Research on Relevance Vector Machine for Hyperspectral Imagery Classification[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6):572-577.(杨国鹏, 余旭初, 周欣, 等. 基于相关向量机的高光谱影像分类研究[J]. 测绘学报, 2010, 39(6):572-577.) [10] YAO Futian, QIAN Yuntao. Gaussian Process and Its Applications in Hyperspectral Image Classification[J]. CAAI Transactions on Intelligent Systems, 2011, 6(5):396-404.(姚伏天, 钱沄涛. 高斯过程及其在高光谱图像分类中的应用[J]. 智能系统学报, 2011, 6(5):396-404.) [11] CSATÓ L. Gaussian Processes-iterative Sparse Approximations[D]. Aston:Aston University, 2002. [12] LAWRENCE N D, SEEGER M, HERBRICH R. The Informative Vector Machine:A Practical Probabilistic Alternative to the Support Vector Machine[R]. Sheffield, UK:Technical Report, Department of Computer Science, 2005. [13] LAWRENCE N D, SEEGER M, HERBRICH R. Fast Sparse Gaussian Process Methods:The Informative Vector Machine[M]//Advances in Neural Information Processing Systems.[S.l.]:MIT Press, 2003:625-632. [14] LAWRENCE N D, PLATT J C. Learning to Learn with the Informative Vector Machine[C]//Proceedings of the 21st International Conference in Machine Learning. San Francisco:[s.n.], 2004:512-519. [15] LIU Jianwei, XU Xiang, LUO Xionglin. Face Recognition Based on Orthogonal Locality Preserving Projection and Informative Vector Machine[J]. Computer Engineering, 2010, 36(7):200-202.(刘建伟, 徐翔, 罗雄麟. 基于OLPP和信息向量机的人脸识别[J]. 计算机工程, 2010, 36(7):200-202.) [16] XU Xiang, LIU Jianwei, LUO Xionglin. Research on Nerval Activity Classification and Decoding Based on Informative Vector Machine[J]. Computer Engineering, 2010, 36(7):198-199, 202.(徐翔, 刘建伟, 罗雄麟. 基于信息向量机的神经活动分类和译码研究[J]. 计算机工程, 2010, 36(7):198-199, 202.) [17] GIBBS M N, MACKAY D J C. Variational Gaussian Process Classifiers[J]. IEEE Transactions on Neural Networks, 2002, 11(6):1458-1464. [18] NEAL R M. Regression and Classification Using Gaussian Process Priors[J]. Bayesian Statistics, 1998, 6(10):475-501. [19] WILUAMS C K I, BARBER D. Bayesian Classification with Gaussian Processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12):1342-1351. [20] MINKA T P. A Family of Algorithms for Approximate Bayesian Inference[D]. Cambridge:Massachusetts Institute of Technology, 2001:36-48. [21] MØLLER M F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning[J]. Neural Networks, 1993, 6(4):525-533. [22] LI Hang. Statistical Learning Method[M]. Beijing:Tsinghua University Press, 2012.(李航. 统计学习方法[M]. 北京:清华大学出版社, 2012.) |