
测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1464-1475.doi: 10.11947/j.AGCS.2025.20230508
王惠琴1(
), 李佳豪1, 刘鑫1, 何永强2, 罗佳1, 刘宾灿3
收稿日期:2024-01-01
修回日期:2025-07-08
出版日期:2025-09-16
发布日期:2025-09-16
作者简介:王惠琴(1971—),女,博士,教授,研究方向为雷达信号检测与处理。E-mail:whq1222@lut.edu.cn
基金资助:
Huiqin WANG1(
), Jiahao LI1, Xin LIU1, Yongqiang HE2, Jia LUO1, Bincan LIU3
Received:2024-01-01
Revised:2025-07-08
Online:2025-09-16
Published:2025-09-16
About author:WANG Huiqin (1971—), female, PhD, professor, majors in radar signal detection and processing. E-mail: whq1222@lut.edu.cn
Supported by:摘要:
噪声的存在会严重影响探地雷达(ground-penetrating radar,GPR)地下管线的智能解译和识别,鉴于此,本文提出一种基于DnNet的探地雷达地下管线数据降噪方法。其中,该算法利用编码器-解码器结构、组归一化和简化的通道注意力机制构造了全新的深度学习降噪网络,实现了探地雷达图像降噪性能的大幅提升。利用深度卷积块改进前馈网络,有效提高了网络对波形边缘信息的恢复能力。同时,也因简化通道注意力机制和前馈网络的改进,大幅度提高了降噪效率。试验结果表明,本文算法有良好的降噪效果。在模拟GPR图像降噪中,相较于字典学习方法、Cycle GAN、DRUNet和DnCNN,当噪声标准差等于50时,本文算法的峰值信噪比分别提升了24.72、24.3、23.54和23.86 dB,结构相似性分别提升了0.545 5、0.424 2、0.140 8和0.375 9。在实际GPR数据降噪中,本文算法相较其他算法能够去除大部分噪声并保留地下管线的波形细节。
中图分类号:
王惠琴, 李佳豪, 刘鑫, 何永强, 罗佳, 刘宾灿. 基于DnNet的探地雷达地下管线数据降噪方法[J]. 测绘学报, 2025, 54(8): 1464-1475.
Huiqin WANG, Jiahao LI, Xin LIU, Yongqiang HE, Jia LUO, Bincan LIU. A denoising method for underground pipeline data acquired by ground penetrating radar based on DnNet[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1464-1475.
| [1] | LI Jinghe, HE Zhanxiang, YANG Jun, et al. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain[J]. Acta Physica Sinica, 2019, 68(9): 090501. |
| [2] |
杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293 |
|
YANG Bisheng, ZONG Zeliang, CHEN Chi, et al. Real time approach for underground objects detection from vehicle-borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293 |
|
| [3] | 王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究[J]. 物理学报, 2018, 67(21): 65-77. |
| WANG Dawei, WANG Zhaoba. Weak ultrasonic signal detection in strong noise[J]. Acta Physica Sinica, 2018, 67(21): 65-77. | |
| [4] | 张立国, 周正欧. 浅地层探地雷达回波倒相的自适应处理[J]. 电子科技大学学报, 2004, 33(5): 519-522. |
| ZHANG Liguo, ZHOU Zheng'ou. Selfadapting processing of the reflecting signal phase invertion of subsurface ground penetrating radar[J]. Journal of University of Electronic Science and Technology of China, 2004, 33(5): 519-522. | |
| [5] | 黄长军, 郭际明, 喻小东, 等. 干涉图EMD-自适应滤波去噪法[J]. 测绘学报, 2013, 42(5): 707-714. |
| HUANG Changjun, GUO Jiming, YU Xiaodong, et al. The study of interferogram denoising method based on EMD and adaptive filter[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 707-714. | |
| [6] | ZOU Hailin, YANG Feng. Image denoising of ground penetrating radar based on wavelet scale space correlation[C]//Proceedings of the 1st International Workshop on Education Technology and Computer Science. Wuhan: IEEE, 2009: 499-503. |
| [7] |
王昶, 张永生, 王旭, 等. 遥感影像条带噪声去除的小波变分法[J]. 测绘学报, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394 |
|
WANG Chang, ZHANG Yongsheng, WANG Xu, et al. Stripe noise removal of remote image based on wavelet variational method[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394 |
|
| [8] | WANG Chang, ZHANG Yongsheng, WANG Xu, et al. An effective strip noise removal method for remote sensing image[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 72-85. |
| [9] | QU Xiaofei, ZHAO Weiwei, LONG En, et al. Removal of stripes in remote sensing images based on statistics combined with image enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 76-87. |
| [10] | XUE Shuqiang, YANG Yuanxi. Adjustment model and colored noise compensation of continuous observation system[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 39-45. |
| [11] |
武曙光, 边少锋, 李厚朴, 等. 基于变分模态分解的GNSS高程时间序列时变信号提取[J]. 测绘学报, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673 |
|
WU Shuguang, BIAN Shaofeng, LI Houpu, et al. Extraction of time-varying signals from GNSS height time series by variational mode decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673 |
|
| [12] | TEMLIOGLU E, ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3098122. |
| [13] | YAN Qiuyu, ZHAO Wufan, HUANG Xiao, et al. Automated delineation of smallholder farm fields using fully convolutional networks and generative adversarial networks[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 10-22. |
| [14] | LIU Lei, CAO Ligang, LU Congde, et al. A denoising method based on cyclegan with attention mechanisms for improving the hidden distress features of pavement[J]. Scientific Reports, 2023, 13(1): 13910. |
| [15] | 林皓, 肖建平, 刘志航, 等. 基于深度学习的铁路路基雷达检测信号中强干扰压制方法研究[J]. 地球物理学进展, 2023, 38(6): 2714-2723. |
| LIN Hao, XIAO Jianping, LIU Zhihang, et al. Clutters suppression in GPR signal for railway subgrade detection based on deep learning[J]. Progress in Geophysics, 2023, 38(6): 2714-2723. | |
| [16] | ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
| [17] | ZHANG Kai, LI Yawei, ZUO Wangmeng, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360-6376. |
| [18] | WU Y, HE K. Group normalization[C]//Proceedings of 2018 European Conference on Computer Vision. [S.l.]: IEEE, 2018: 3-19. |
| [19] | DONG Linhao, XU Shuang, XU Bo. Speech-Transformer: a no-recurrence sequence-to-sequence model for speech recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 5884-5888. |
| [20] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718-5729. |
| [21] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 1: e30. |
| [22] | ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of 2018 European conference on computer vision. Cham: Springer, 2018: 294-310. |
| [23] | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. [S.l.]: IEEE, 2010. |
| [24] | YIN Xinyou, GOUDRIAAN J, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany, 2003, 91(3): 361-371. |
| [25] | NI Sen, JIA Pengfei, XU Yang, et al. Prediction of CO concentration in different conditions based on Gaussian-TCN[J]. Sensors and Actuators B: Chemical, 2023, 376: 133010. |
| [26] | CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration[C]//Proceedings of the 17th European Conference. Cham: Springer Nature Switzerland, 2022: 17-33. |
| [27] | WU Haiping, XIAO Bin, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 22-31. |
| [28] | ZHANG Fengzhen, CEN Yigang, ZHAO Ruizhen, et al. Analytic separable dictionary learning based on oblique manifold[J]. Neurocomputing, 2017, 236: 32-38. |
| [1] | 张继贤, 顾海燕, 倪欢, 李海涛, 杨懿, 丁少鹏, 隋淞蔓. 遥感智能变化检测的深度学习方法:演变与发展趋势[J]. 测绘学报, 2025, 54(8): 1347-1370. |
| [2] | 方帅, 刘加恩, 张晶. 自适应参考特征引入与多尺度特征聚合的时空融合算法[J]. 测绘学报, 2025, 54(8): 1476-1488. |
| [3] | 甘文建, 周杨, 胡校飞, 赵璐颖, 黄高爽, 侯铭波. 基于投影转换与道路分割的街景-卫星影像跨视角定位方法[J]. 测绘学报, 2025, 54(8): 1489-1500. |
| [4] | 吴田军, 李曼嘉, 骆剑承, 李子琪, 胡晓东, 郜丽静, 沈占锋. 耦合空间分布模式的复杂山区地块作物遥感分类方法[J]. 测绘学报, 2025, 54(7): 1215-1229. |
| [5] | 程青, 汪博轩, 张洪艳. DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法[J]. 测绘学报, 2025, 54(7): 1230-1242. |
| [6] | 臧玉府, 王树野, 董震, 陈驰, 黄荣刚. 基于PCF-Net网络的建筑点云立面结构高精度提取[J]. 测绘学报, 2025, 54(7): 1243-1253. |
| [7] | 徐永洋, 王健, 吴亮, 谢忠. 顾及道路边界与连通性的道路提取方法研究[J]. 测绘学报, 2025, 54(7): 1254-1264. |
| [8] | 谢亚坤, 赵耀纪, 涂佳星, 夏瑞丰, 冯德俊, 刘苏凝, 陈虹宇, 朱军. 融合边缘与全局特征的遥感影像显著性目标检测方法[J]. 测绘学报, 2025, 54(7): 1265-1279. |
| [9] | 万杰, 谢忠, 徐永洋, 陶留锋. 面向城市道路场景的车载LiDAR点云语义分割U形图卷积网络方法[J]. 测绘学报, 2025, 54(7): 1280-1293. |
| [10] | 徐联中, 陈传法, 陈东兴, 王兴杰, 杨子明, 杨淑凡, 洪壮壮, 郝劲达. 顾及地形特征的大规模机载LiDAR点云高效滤波方法[J]. 测绘学报, 2025, 54(6): 1082-1093. |
| [11] | 董子博, 王竞雪, 卜丽静, 房琳, 许峥辉. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. |
| [12] | 周平平. 基于高光谱数据的古书画污渍虚拟修复方法研究[J]. 测绘学报, 2025, 54(6): 1153-1153. |
| [13] | 李海峰, 郭旺, 吴梦伟, 彭程里, 朱庆, 刘瑜, 陶超. 视觉-语言联合的遥感地物概念表达与智能解译:原理、挑战与机遇[J]. 测绘学报, 2025, 54(5): 853-872. |
| [14] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [15] | 罗卿莉, 李雪岩, 黄国满, 陈红辉, 薛铭龙, 李健. AOSN:α-最优网络模型的山区单通道SAR高程重建方法[J]. 测绘学报, 2025, 54(5): 888-898. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||