
测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1464-1475.doi: 10.11947/j.AGCS.2025.20230508
王惠琴1(
), 李佳豪1, 刘鑫1, 何永强2, 罗佳1, 刘宾灿3
收稿日期:2024-01-01
修回日期:2025-07-08
出版日期:2025-09-16
发布日期:2025-09-16
作者简介:王惠琴(1971—),女,博士,教授,研究方向为雷达信号检测与处理。E-mail:whq1222@lut.edu.cn
基金资助:
Huiqin WANG1(
), Jiahao LI1, Xin LIU1, Yongqiang HE2, Jia LUO1, Bincan LIU3
Received:2024-01-01
Revised:2025-07-08
Online:2025-09-16
Published:2025-09-16
About author:WANG Huiqin (1971—), female, PhD, professor, majors in radar signal detection and processing. E-mail: whq1222@lut.edu.cn
Supported by:摘要:
噪声的存在会严重影响探地雷达(ground-penetrating radar,GPR)地下管线的智能解译和识别,鉴于此,本文提出一种基于DnNet的探地雷达地下管线数据降噪方法。其中,该算法利用编码器-解码器结构、组归一化和简化的通道注意力机制构造了全新的深度学习降噪网络,实现了探地雷达图像降噪性能的大幅提升。利用深度卷积块改进前馈网络,有效提高了网络对波形边缘信息的恢复能力。同时,也因简化通道注意力机制和前馈网络的改进,大幅度提高了降噪效率。试验结果表明,本文算法有良好的降噪效果。在模拟GPR图像降噪中,相较于字典学习方法、Cycle GAN、DRUNet和DnCNN,当噪声标准差等于50时,本文算法的峰值信噪比分别提升了24.72、24.3、23.54和23.86 dB,结构相似性分别提升了0.545 5、0.424 2、0.140 8和0.375 9。在实际GPR数据降噪中,本文算法相较其他算法能够去除大部分噪声并保留地下管线的波形细节。
中图分类号:
王惠琴, 李佳豪, 刘鑫, 何永强, 罗佳, 刘宾灿. 基于DnNet的探地雷达地下管线数据降噪方法[J]. 测绘学报, 2025, 54(8): 1464-1475.
Huiqin WANG, Jiahao LI, Xin LIU, Yongqiang HE, Jia LUO, Bincan LIU. A denoising method for underground pipeline data acquired by ground penetrating radar based on DnNet[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1464-1475.
| [1] | LI Jinghe, HE Zhanxiang, YANG Jun, et al. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain[J]. Acta Physica Sinica, 2019, 68(9): 090501. |
| [2] |
杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293 |
|
YANG Bisheng, ZONG Zeliang, CHEN Chi, et al. Real time approach for underground objects detection from vehicle-borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293 |
|
| [3] | 王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究[J]. 物理学报, 2018, 67(21): 65-77. |
| WANG Dawei, WANG Zhaoba. Weak ultrasonic signal detection in strong noise[J]. Acta Physica Sinica, 2018, 67(21): 65-77. | |
| [4] | 张立国, 周正欧. 浅地层探地雷达回波倒相的自适应处理[J]. 电子科技大学学报, 2004, 33(5): 519-522. |
| ZHANG Liguo, ZHOU Zheng'ou. Selfadapting processing of the reflecting signal phase invertion of subsurface ground penetrating radar[J]. Journal of University of Electronic Science and Technology of China, 2004, 33(5): 519-522. | |
| [5] | 黄长军, 郭际明, 喻小东, 等. 干涉图EMD-自适应滤波去噪法[J]. 测绘学报, 2013, 42(5): 707-714. |
| HUANG Changjun, GUO Jiming, YU Xiaodong, et al. The study of interferogram denoising method based on EMD and adaptive filter[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 707-714. | |
| [6] | ZOU Hailin, YANG Feng. Image denoising of ground penetrating radar based on wavelet scale space correlation[C]//Proceedings of the 1st International Workshop on Education Technology and Computer Science. Wuhan: IEEE, 2009: 499-503. |
| [7] |
王昶, 张永生, 王旭, 等. 遥感影像条带噪声去除的小波变分法[J]. 测绘学报, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394 |
|
WANG Chang, ZHANG Yongsheng, WANG Xu, et al. Stripe noise removal of remote image based on wavelet variational method[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394 |
|
| [8] | WANG Chang, ZHANG Yongsheng, WANG Xu, et al. An effective strip noise removal method for remote sensing image[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 72-85. |
| [9] | QU Xiaofei, ZHAO Weiwei, LONG En, et al. Removal of stripes in remote sensing images based on statistics combined with image enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 76-87. |
| [10] | XUE Shuqiang, YANG Yuanxi. Adjustment model and colored noise compensation of continuous observation system[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 39-45. |
| [11] |
武曙光, 边少锋, 李厚朴, 等. 基于变分模态分解的GNSS高程时间序列时变信号提取[J]. 测绘学报, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673 |
|
WU Shuguang, BIAN Shaofeng, LI Houpu, et al. Extraction of time-varying signals from GNSS height time series by variational mode decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673 |
|
| [12] | TEMLIOGLU E, ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3098122. |
| [13] | YAN Qiuyu, ZHAO Wufan, HUANG Xiao, et al. Automated delineation of smallholder farm fields using fully convolutional networks and generative adversarial networks[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 10-22. |
| [14] | LIU Lei, CAO Ligang, LU Congde, et al. A denoising method based on cyclegan with attention mechanisms for improving the hidden distress features of pavement[J]. Scientific Reports, 2023, 13(1): 13910. |
| [15] | 林皓, 肖建平, 刘志航, 等. 基于深度学习的铁路路基雷达检测信号中强干扰压制方法研究[J]. 地球物理学进展, 2023, 38(6): 2714-2723. |
| LIN Hao, XIAO Jianping, LIU Zhihang, et al. Clutters suppression in GPR signal for railway subgrade detection based on deep learning[J]. Progress in Geophysics, 2023, 38(6): 2714-2723. | |
| [16] | ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
| [17] | ZHANG Kai, LI Yawei, ZUO Wangmeng, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360-6376. |
| [18] | WU Y, HE K. Group normalization[C]//Proceedings of 2018 European Conference on Computer Vision. [S.l.]: IEEE, 2018: 3-19. |
| [19] | DONG Linhao, XU Shuang, XU Bo. Speech-Transformer: a no-recurrence sequence-to-sequence model for speech recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 5884-5888. |
| [20] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718-5729. |
| [21] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 1: e30. |
| [22] | ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of 2018 European conference on computer vision. Cham: Springer, 2018: 294-310. |
| [23] | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. [S.l.]: IEEE, 2010. |
| [24] | YIN Xinyou, GOUDRIAAN J, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany, 2003, 91(3): 361-371. |
| [25] | NI Sen, JIA Pengfei, XU Yang, et al. Prediction of CO concentration in different conditions based on Gaussian-TCN[J]. Sensors and Actuators B: Chemical, 2023, 376: 133010. |
| [26] | CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration[C]//Proceedings of the 17th European Conference. Cham: Springer Nature Switzerland, 2022: 17-33. |
| [27] | WU Haiping, XIAO Bin, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 22-31. |
| [28] | ZHANG Fengzhen, CEN Yigang, ZHAO Ruizhen, et al. Analytic separable dictionary learning based on oblique manifold[J]. Neurocomputing, 2017, 236: 32-38. |
| [1] | 曹云刚, 杨鹏, 龚江波, 朱高, 沈星宇. 空间关系增强与异构特征融合相结合的道路信息提取方法[J]. 测绘学报, 2025, 54(12): 2219-2232. |
| [2] | 张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246. |
| [3] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [4] | 熊强. 基于空间结构特征的多模态遥感图像匹配方法研究[J]. 测绘学报, 2025, 54(12): 2288-2288. |
| [5] | 冯雨宁. 青藏高原多级气候分区研究[J]. 测绘学报, 2025, 54(12): 2293-2293. |
| [6] | 童小华, 黄荣, 曹佳瑞, 刘宸, 王蓉, 徐聿升, 叶真, 金雁敏, 刘世杰, 柳思聪, 冯永玖, 谢欢. 月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战[J]. 测绘学报, 2025, 54(11): 1917-1933. |
| [7] | 武昊, 侯东阳, 张俊, 张平, 刘玉轩, 杜磊, 康路, 程滔, 陈军. 动态服务计算支持的自然资源遥感监测监管平台关键技术研究[J]. 测绘学报, 2025, 54(11): 1992-2008. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 衣雪峰. 点云与影像融合的隧洞岩体结构信息自动提取方法研究[J]. 测绘学报, 2025, 54(11): 2098-2098. |
| [10] | 马开森. 地面激光雷达林分点云单木分离及参数提取研究[J]. 测绘学报, 2025, 54(11): 2100-2100. |
| [11] | 师悦龄. 基于SAR干涉和偏移量追踪估计的高山冰川冰湖动态演变监测及其关联特征分析[J]. 测绘学报, 2025, 54(11): 2103-2103. |
| [12] | 李康宁. 全球城市热岛遥感研究:时空特征、变化模式及驱动分析[J]. 测绘学报, 2025, 54(11): 2105-2105. |
| [13] | 黄鑫, 叶健, 刘骋冰, 曾秋雨, 郭万新, 郭志凯. 一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法[J]. 测绘学报, 2025, 54(10): 1826-1840. |
| [14] | 熊新, 靳国旺, 崔瑞兵, 李烁, 杨鹤. 利用秩自相似特征的光学和SAR图像快速匹配方法[J]. 测绘学报, 2025, 54(10): 1852-1862. |
| [15] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||