测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1464-1475.doi: 10.11947/j.AGCS.2025.20230508

• 摄影测量学与遥感 • 上一篇    下一篇

基于DnNet的探地雷达地下管线数据降噪方法

王惠琴1(), 李佳豪1, 刘鑫1, 何永强2, 罗佳1, 刘宾灿3   

  1. 1.兰州理工大学计算机与通信学院,甘肃 兰州 730050
    2.西北民族大学土木工程学院,甘肃 兰州 730030
    3.陕西建工安装集团有限公司,陕西 西安 710068
  • 收稿日期:2024-01-01 修回日期:2025-07-08 出版日期:2025-09-16 发布日期:2025-09-16
  • 作者简介:王惠琴(1971—),女,博士,教授,研究方向为雷达信号检测与处理。E-mail:whq1222@lut.edu.cn
  • 基金资助:
    甘肃省重点研发计划(23YFFA0060);甘肃省优秀研究生“创新之星”项目(2025CXZX-57)

A denoising method for underground pipeline data acquired by ground penetrating radar based on DnNet

Huiqin WANG1(), Jiahao LI1, Xin LIU1, Yongqiang HE2, Jia LUO1, Bincan LIU3   

  1. 1.School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
    2.School of Civil Engineering, Northwest Minzu University, Lanzhou 730030, China
    3.SCEGC Equipment Installation Group Co., Ltd., Xi'an 710068, China
  • Received:2024-01-01 Revised:2025-07-08 Online:2025-09-16 Published:2025-09-16
  • About author:WANG Huiqin (1971—), female, PhD, professor, majors in radar signal detection and processing. E-mail: whq1222@lut.edu.cn
  • Supported by:
    Key Research and Development Program of Gansu Province(23YFFA0060);“Innovation Star” Project of Outstanding Graduate Students in Gansu Province(2025CXZX-57)

摘要:

噪声的存在会严重影响探地雷达(ground-penetrating radar,GPR)地下管线的智能解译和识别,鉴于此,本文提出一种基于DnNet的探地雷达地下管线数据降噪方法。其中,该算法利用编码器-解码器结构、组归一化和简化的通道注意力机制构造了全新的深度学习降噪网络,实现了探地雷达图像降噪性能的大幅提升。利用深度卷积块改进前馈网络,有效提高了网络对波形边缘信息的恢复能力。同时,也因简化通道注意力机制和前馈网络的改进,大幅度提高了降噪效率。试验结果表明,本文算法有良好的降噪效果。在模拟GPR图像降噪中,相较于字典学习方法、Cycle GAN、DRUNet和DnCNN,当噪声标准差等于50时,本文算法的峰值信噪比分别提升了24.72、24.3、23.54和23.86 dB,结构相似性分别提升了0.545 5、0.424 2、0.140 8和0.375 9。在实际GPR数据降噪中,本文算法相较其他算法能够去除大部分噪声并保留地下管线的波形细节。

关键词: GPR图像降噪, 编码器-解码器, 组归一化, 通道注意力

Abstract:

The presence of noise can seriously affect the intelligent interpretation and identification of ground-penetrating radar (GPR) underground pipelines. In view of this, this paper proposes a PnNet-based denoising method for GPR under ground pipeline data. Among them, this algorithm constructs a brand-new deep learning denoising network by using the encoder-decoder structure, group normalization and simplified channel attention mechanism, achieving a significant improvement in the denoising performance of ground penetrating radar images. The feedforward network is improved by using deep convolutional blocks, effectively enhancing the network's ability to recover waveform edge information. Meanwhile, due to the simplification of the channel attention mechanism and the improvement of the feedforward network, the noise reduction efficiency has been significantly enhanced. The experimental results show that the proposed algorithm has a good noise reduction effect. In the noise reduction of simulated GPR images, compared with the dictionary learning method, Cycle GAN, DRUNet and DnCNN, when the standard deviation of noise is equal to 50, the peak signal-to-noise ratio of the proposed algorithm has increased by 24.72, 24.3, 23.54 and 23.86 dB respectively. The structural similarities have increased by 0.545 5, 0.424 2, 0.140 8 and 0.375 9 respectively. In the actual denoising of GPR data, the proposed algorithm can remove most of the noise and retain the waveform details of underground pipelines compared with other algorithms.

Key words: GPR image denoising, encoder-decoder, group normalization, channel attention

中图分类号: