测绘学报 ›› 2014, Vol. 43 ›› Issue (9): 939-944.doi: 10.13485/j.cnki.11-2089.2014.0162

• 学术论文 • 上一篇    下一篇

高分辨率SAR图像中建筑物特征融合检测算法

苏娟1,张强2,陈炜1,王继平2   

  1. 1. 第二炮兵工程大学
    2. 第二炮兵装备研究院
  • 收稿日期:2014-02-14 修回日期:2014-05-15 出版日期:2014-09-20 发布日期:2014-09-25
  • 通讯作者: 苏娟 E-mail:suj04@mails.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金

A Building Detection Algorithm Based on Visual Attention and Feature Fusion in High Resolution SAR Images

SU Juan1,ZHANG Qiang2,CHEN Wei1,WANG Jiping2   

  1. 1. The Second Artillery Engineering University
    2. The Second Artillery Equipment Institute
  • Received:2014-02-14 Revised:2014-05-15 Online:2014-09-20 Published:2014-09-25
  • Contact: SU Juan E-mail:suj04@mails.tsinghua.edu.cn

摘要:

针对高分辨率SAR图像中的建筑物检测问题,提出了一种基于视觉注意和特征融合的检测算法。首先,根据SAR图像中建筑物目标与背景存在较大差异的特点,采用视觉注意机制进行建筑物的感兴趣区分割;然后,提取位于感兴趣区域内的高亮线条和阴影区域;最后,采用D-S证据理论对注意焦点、高亮线条和阴影区域进行特征融合,实现建筑物目标的检测。实验结果表明,本文算法对矩形建筑物具有较高的检测精度。

关键词: SAR图像处理, 建筑物检测, 视觉注意机制, D-S证据理论, 特征融合

Abstract:

A building detection algorithm based on visual attention and feature fusion is proposed for high spatial resolution SAR images. Firstly, visual attention model is constructed on the basis of great difference between buildings and backgrounds, and used to segment the ROIs of buildings. Secondly, bright lines and shadow regions are extracted in the segmented ROIs. Finally, D-S evidence theory is used to fusion the focus of attention, bright line and shadow region, and then the buildings are detected. Experimental results demonstrate that, the proposed algorithm has high detection accuracy for rectangular buildings in SAR images.

Key words: SAR image processing, Building detection, Visual attention model, D-S evidence theory, Feature fusion

中图分类号: