测绘学报 ›› 2018, Vol. 47 ›› Issue (5): 652-662.doi: 10.11947/j.AGCS.2018.20160625

• 地图学与地理信息 • 上一篇    下一篇

基于MBR组合优化算法的多尺度面实体匹配方法

刘凌佳1, 朱道也1, 朱欣焰1,2,3, 丁小辉4, 呙维1,2   

  1. 1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    2. 武汉大学地球空间信息技术协同创新中心, 湖北 武汉 430079;
    3. 武汉大学空天信息安全与可信计算教育部重点实验室, 湖北 武汉 430072;
    4. 中国科学院东北地理与农业生态研究所, 吉林 长春 130102
  • 收稿日期:2016-12-07 修回日期:2017-11-09 出版日期:2018-05-20 发布日期:2018-06-01
  • 通讯作者: 朱欣焰 E-mail:xinyanzhu@whu.edu.cn
  • 作者简介:刘凌佳(1990-),男,博士生,研究方向为空间数据融合与地图更新。E-mail:liulingjia_office@163.com
  • 基金资助:
    国家重点研发计划(2016YFB0502204);测绘遥感信息工程国家重点实验室专项科研项目;测绘遥感信息工程国家重点实验室重点开放基金;航天科技联合基金

A Multi-scale Polygonal Object Matching Method Based on MBR Combinatorial Optimization Algorithm

LIU Lingjia1, ZHU Daoye1, ZHU Xinyan1,2,3, DING Xiaohui4, GUO Wei1,2   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    2. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China;
    3. Key Laboratory of Aerospace Information Security and Trusted Computing of Ministry of Education, Wuhan University, Wuhan 430072, China;
    4. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
  • Received:2016-12-07 Revised:2017-11-09 Online:2018-05-20 Published:2018-06-01
  • Supported by:
    The National Key Research and Development Program of China (No.2016YFB0502204);The LIESMARS Special Research Funding;The Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing (2016Key Project);The Aerospace Science and Technology Innovation Foundation of China

摘要: 针对多尺度匹配中同名实体位置偏差较大,无法直接通过面积重叠法获得候选匹配的问题,本文提出了一种基于最小外包矩形(MBR)组合优化算法的多尺度面实体匹配方法。本文方法的基本思想是通过MBR组合优化和简要的形状特征来筛选1∶1、1∶NMN候选匹配,然后构建多因子人工神经网络模型来评估候选匹配。试验选取浙江省舟山市1∶2000岛礁基础数据和1∶10 000陆地基础数据中的居民地与设施面进行匹配算法的验证。结果表明,本文方法相对于基于面积重叠-神经网络的匹配方法表现出显著的优势,对存在位置偏移的匹配数据准确率和召回率分别达到了达到96.5%,达到89.0%,且能够识别所有匹配类型。

关键词: 多尺度, 面匹配, 组合算法, 空间域, 人工神经网络

Abstract: Aiming to solving the problem of positional discrepancy of corresponding objects in multi-scale polygonal object matching and that the potential matching pairs can't be directly identified by the method of areal overlapping, it is proposed that a multi-scale polygonal object matching method based on minimum bounding rectangle combinatorial optimization algorithm. The basic idea of our method is that:①identifying the potential matching pairs of 1:1, 1:N and M:N with combinatorial algorithm and simple shape characteristic;②establishing multi-characteristic artificial neural network model to evaluate these potential matching pairs. The proposed method is demonstrated in the experiment of matching between 1:2000 and 1:10000 polygonal objects of residential buildings and industrial facilities in Zhoushan, Zhejiang Province. The experimental results showed that the proposed matching method show superior performance against a method of area overlapping and artificial neural network. Its precision and recall are 96.5% and 89.0% under the positional discrepancy scenario, and it successfully match 1:0, 1:1,1:N and M:N matching pair.

Key words: multi-scale, polygonal object matching, combinatorial algorithm, spatial district, artificial neural network

中图分类号: