[1] |
吴良斌. SAR图像处理与目标识别[M]. 北京: 航空工业出版社, 2013.
|
|
WU Liangbin. SAR image processing and target recognition[M]. Beijing: Aviation Industry Press, 2013.
|
[2] |
陈鹏, 范开国, 李晓明, 等. 合成孔径雷达海上舰船遥感探测技术与应用[M]. 北京: 海洋出版社, 2019.
|
|
CHEN Peng, FAN Kaiguo, LI Xiaoming, et al. Remote sensing detection technology and application of synthetic aperture radar for ships at sea[M]. Beijing: Ocean Press, 2019.
|
[3] |
DU Kangning, DENG Yunkai, WANG R, et al. SAR ATR based on displacement- and rotation-insensitive CNN[J]. Remote Sensing Letters, 2016, 7(9):895-904.
|
[4] |
靳国旺, 张红敏, 徐青. 雷达摄影测量[M]. 北京: 测绘出版社, 2015.
|
|
JIN Guowang, ZHANG Hongmin, XU Qing. Radargrammetry[M]. Beijing: Surveying and Mapping Press, 2015.
|
[5] |
ELDHUSET K. Automatic ship and ship wake detection in spaceborne SAR images from coastal regions[C]//Proceedings of 2002 International Geoscience and Remote Sensing Symposium. Edinburgh: IEEE, 2002: 1529-1533.
|
[6] |
王世晞, 贺志国. 基于PCA特征的快速SAR图像目标识别方法[J]. 国防科技大学学报, 2008, 30(3):136-140.
|
|
WANG Shixi, HE Zhiguo. The fast target recognition approach based on PCA features for SAR images[J]. Journal of National University of Defense Technology, 2008, 30(3):136-140.
|
[7] |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9):1953-1959.
|
|
LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9):1953-1959.
|
[8] |
CHEN Sizhe, WANG Haipeng. SAR target recognition based on deep learning[C]//Proceedings of 2014 International Conference on Data Science and Advanced Analytics. Shanghai: IEEE, 2014: 541-547.
|
[9] |
SHARIFZADEH F, AKBARIZADEH G, SEIFI KAVIAN Y. Ship classification in SAR images using a new hybrid CNN-MLP classifier[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(4):551-562.
|
[10] |
余东行, 郭海涛, 赵传, 等. 直线特征辅助的靠岸舰船检测[J]. 测绘科学技术学报, 2019, 36(3):275-280,286.
|
|
YU Donghang, GUO Haitao, ZHAO Chuan, et al. Detection of ship docked in harbor assisted with line feature[J]. Journal of Geomatics Science and Technology, 2019, 36(3):275-280,286.
|
[11] |
焦军峰, 靳国旺, 熊新, 等. 旋转矩形框与CBAM改进RetinaNet的SAR图像近岸舰船检测[J]. 测绘科学技术学报, 2020, 37(6):603-609.
|
|
JIAO Junfeng, JIN Guowang, XIONG Xin, et al. SAR images nearshore ship detection based on RetinaNet algorithm with rotated rectangular box[J]. Journal of Geomatics Science and Technology, 2020, 37(6):603-609.
|
[12] |
HAN Song, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[EB/OL].[2022-09-24].http://dx.doi.org/10.48550/arXiv.1506.02626.
|
[13] |
HINTON G E, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].[2022-09-24]. https://www.semanticscholar.org/paper/0c908739fbff75f03469d13d4a1a07de3414ee19.
|
[14] |
周舟, 王海鹏, 徐丰, 等. 基于通道剪枝的SAR图像舰船检测优化算法[J]. 上海航天(中英文), 2020, 37(4):48-54.
|
|
ZHOU Zhou, WANG Haipeng, XU Feng, et al. Optimization algorithm for ship detection in SAR images based on channel pruning[J]. Aerospace Shanghai (Chinese & English), 2020, 37(4):48-54.
|
[15] |
陆天宇, 徐湛, 崔红元, 等.大幅宽SAR图像嵌入式舰船实时检测系统设计[J].计算机工程与应用, 2024, 60(1):301-309.
|
|
LU Tianyu, XU Zhan, CUI Hongyuan, et al. Design of ship real-time detection system embedded with large and wide SAR images[J]. Computer Engineering and Applications, 2024, 60(1):301-309.
|
[16] |
LIU Zhuang, LI Jianguo, SHEN Zhiqiang, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2755-2763.
|
[17] |
王恒涛, 张上. 轻量化SAR图像舰船目标检测算法[J]. 电光与控制, 2023, 30(5):99-104,110.
|
|
WANG Hengtao, ZHANG Shang. Lightweight ship target detection algorithm for SAR images[J]. Electronics Optics & Control, 2023, 30(5):99-104,110.
|
[18] |
付晓雅. 基于场景分类和知识蒸馏的SAR图像舰船目标检测算法研究[D]. 天津: 河北工业大学, 2022.
|
|
FU Xiaoya. Research on ship target detection algorithm in SAR image based on scene classification and knowledge distillation[D]. Tianjin: Hebei University of Technology, 2022.
|
[19] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
[20] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of 2016 Computer Vision-ECCV. Cham: Springer, 2016: 21-37.
|
[21] |
陈诗琪, 王威, 占荣辉, 等. 特征图知识蒸馏引导的轻量化任意方向SAR舰船目标检测器[J]. 雷达学报, 2023, 12(1):140-153.
|
|
CHEN Shiqi, WANG Wei, ZHAN Ronghui, et al. A lightweight, arbitrary-oriented SAR ship detector via feature map-based knowledge distillation[J]. Journal of Radars, 2023, 12(1):140-153.
|
[22] |
罗杨, 卞春江, 陈红珍.基于特征解耦的SAR图像舰船检测蒸馏[J].计算机工程与应用, 2024, 60(02):171-179.
|
|
LUO Yang, BIAN Chunjiang, CHEN Hongzhen. SAR image ship detection distillation based on feature decoupling[J]. Computer engineering and applications, 2024, 60(02):171-179.
|
[23] |
PARK J, NO A. Prune your model before distill it[C]//Proceedings of 2022 Computer Vision-ECCV European Conference. Cham: Springer, 2022: 120-136.
|
[24] |
CHEN Shiqi, ZHAN Ronghui, WANG Wei, et al. Learning slimming SAR ship object detector through network pruning and knowledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:1267-1282.
|
[25] |
WANG Zhen, DU Lan, LI Yi. Boosting lightweight CNNs through network pruning and knowledge distillation for SAR target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:8386-8397.
|
[26] |
陈杰, 黄志祥, 夏润繁, 等. 大规模多类SAR目标检测数据集-1.0[DS/OL]. [2022-09-24].https://radars.ac.cn/web/data/getData?dataType=MSAR.
|
|
CHEN Jie, HUANG Zhixiang, XIA Runfan, et al.Large-scale multi-class SAR image target detection dataset-1.0[DS/OL]. [2022-09-24].https://radars.ac.cn/web/data/getData?dataType=MSAR.
|
[27] |
XIA Runfan, CHEN Jie, HUANG Zhixiang, et al. CRTransSar: a visual transformer based on contextual joint representation learning for SAR ship detection[J]. Remote Sensing, 2022, 14(6):1488.
|
[28] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18):3690.
|