[1] |
陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235.
|
|
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235.
|
[2] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
|
[3] |
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211.
|
[4] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of 2014 International Conference on Neural Information Processing Systems. Montreal: ACM Press, 2014: 2672-2680.
|
[5] |
MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177.
|
[6] |
CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756.
|
[7] |
PACIFICI F, DEL FRATE F, SOLIMINI C, et al. An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9):2940-2952.
|
[8] |
龚健雅, 张觅, 胡翔云, 等. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027.
|
|
GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027.
|
[9] |
张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083.DOI:10.11947/j.AGCS.2021.20210079.
|
|
ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083.DOI:10.11947/j.AGCS.2021.20210079.
|
[10] |
陶超, 阴紫薇, 朱庆, 等. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089.
|
|
TAO Chao, YIN Ziwei, ZHU Qing, et al. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089.
|
[11] |
CHEN Sizhe, WANG Haipeng. SAR target recognition based on deep learning[C]//Proceedings of 2014 International Conference on Data Science and Advanced Analytics. Shanghai: IEEE, 2014: 541-547.
|
[12] |
PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):2196-2210.
|
[13] |
ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4):143-172.
|
[14] |
XIE Huiming, WANG Shuang, LIU Kun, et al. Multilayer feature learning for polarimetric synthetic radar data classification[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 2818-2821.
|
[15] |
GONG Maoguo, ZHAO Jiaojiao, LIU Jia, et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):125-138.
|
[16] |
QIAN Kun, WANG Yuanyuan, SHI Yilei, et al. γ-Net: superresolving SAR tomographic inversion via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-16.
|
[17] |
WANG Teng, ZHANG Qi, WU Zhipeng. A deep-learning-facilitated, detection-first strategy for operationally monitoring localized deformation with large-scale InSAR[J]. Remote Sensing, 2023, 15(9):2310.
|
[18] |
MUKHERJEE S, ZIMMER A, KOTTAYIL N K, et al. CNN-based InSAR denoising and coherence metric[C]//Proceedings of 2018 IEEE SENSORS. New Delhi: IEEE, 2018: 808-811.
|
[19] |
SICA F, GOBBI G, RIZZOLI P, et al. Φ-Net: deep residual learning for InSAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5):3917-3941.
|
[20] |
SPOORTHI G E, SAI SUBRAHMANYAM GORTHI R K, GORTHI S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 2020, 29:4862-4872.
|
[21] |
WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3121907.
|
[22] |
HU Jun, WU Wenqing, GUI Rong, et al. Deep learning-based homogeneous pixel selection for multitemporal SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3203975.
|
[23] |
TIWARI A, NARAYAN A B, DIKSHIT O. Deep learning networks for selection of measurement pixels in multi-temporal SAR interferometric processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:169-182.
|
[24] |
CHEN Yuxing, BRUZZONE L, JIANG Liming, et al. ARU-Net: reduction of atmospheric phase screen in SAR interferometry using attention-based deep residual U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5780-5793.
|
[25] |
ZHAO Zhuoyi, WU Zherong, ZHENG Yi, et al. Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180:227-237.
|
[26] |
ANANTRASIRICHAI N, BIGGS J, ALBINO F, et al. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets[J]. Remote Sensing of Environment, 2019, 230:111179.
|
[27] |
ROUET-LEDUC B, JOLIVET R, DALAISON M, et al. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning[J]. Nature Communications, 2021, 12:6480.
|
[28] |
LATTARI F, RUCCI A, MATTEUCCI M. A deep learning approach for change points detection in InSAR time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3155969.
|
[29] |
MA Peifeng, ZHANG Fan, LIN Hui. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2):137-145.
|
[30] |
BÜURGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:169-209.
|
[31] |
程惠红, 姚宜斌, 赵倩, 等. 从国家自然科学基金项目资助探讨大地测量学的学科架构与发展[J]. 测绘学报. 2023, 52(4):523-535. DOI:10.11947/j.AGCS.2023.20220663.
|
|
CHENG Huihong, YAO Yibin, ZHAO Qian, et al. Exploring the geodesy principle architecture and development from the perspective of granted NSFC projects[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4):523-535. DOI:10.11947/j.AGCS.2023.20220663.
|
[32] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350.
|
|
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350.
|
[33] |
FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//Proceedings of 1999 International Geoscience and Remote Sensing Symposium. Hamburg: IEEE, 1999.
|
[34] |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
|
[35] |
FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
|
[36] |
ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652.
|
[37] |
RAMBOUR C, BUDILLON A, JOHNSY A C, et al. From interferometric to tomographic SAR: a review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2):6-29.
|