| [1] |
张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7): 1398-1415. DOI: .
doi: 10.11947/j.AGCS.2022.20220279
|
|
ZHANG Bing, YANG Xiaomei, GAO Lianru, et al. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1398-1415. DOI: .
doi: 10.11947/j.AGCS.2022.20220279
|
| [2] |
李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4): 379-384. DOI: .
doi: 10.11947/j.AGCS.2016.20160057
|
|
LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 379-384. DOI: .
doi: 10.11947/j.AGCS.2016.20160057
|
| [3] |
龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796.
|
|
GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796.
|
| [4] |
BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver: IEEE Computer Society, 2001: 105-112.
|
| [5] |
ROTHER C, KOLMOGOROV V, BLAKE A. GrabCut: interactive foreground extraction using iterated graph cut[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
|
| [6] |
GRADY L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783.
|
| [7] |
XU Ning, PRICE B, COHEN S, et al. Deep interactive object selection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 373-381.
|
| [8] |
LIEW J, WEI Yunchao, XIONG Wei, et al. Regional interactive image segmentation networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2746-2754.
|
| [9] |
LEE K M, MYEONG H, SONG G. SeedNet: automatic seed generation with deep reinforcement learning for robust interactive segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1760-1768.
|
| [10] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017.
|
| [11] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3992-4003.
|
| [12] |
OSCO L P, WU Qiusheng, DE LEMOS E L, et al. The segment anything model (SAM) for remote sensing applications: from zero to one shot[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103540.
|
| [13] |
HAO Y, LIU Y, CHEN Y, et al. Eiseg: an efficient interactive segmentation tool based on paddlepaddle[EB/OL]. [2025-02-08]. https://arxiv.org/pdf/2210.08788.
|
| [14] |
WANG Wei. Advanced auto labeling solution with added features[EB/OL]. [2025-02-08]. https://github.com/CVHub520/X-AnyLabeling.
|
| [15] |
ZHANG Zhili, HU Xiangyun, YANG Yue, et al. High-quality one-shot interactive segmentation for remote sensing images via hybrid adapter-enhanced foundation models[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 139: 104466.
|
| [16] |
ZHANG Zhili, XU Jiabo, HU Xiangyun, et al. Faster interactive segmentation of identical-class objects with one mask in high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4500516.
|
| [17] |
ZHANG Zhili, ZHANG Qi, HU Xiangyun, et al. On the automatic quality assessment of annotated sample data for object extraction from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 201: 153-173.
|
| [18] |
BOGUSZEWSKI A, BATORSKI D, ZIEMBA-JANKOWSKA N, et al. LandCover. ai: dataset for automatic mapping of buildings, woodlands, water and roads from aerial imagery[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 1102-1110.
|
| [19] |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s. n.], 2010.
|
| [20] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
| [21] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of 2015 International Conference on Learning Representations. San Diego: ICLR, 2015.
|
| [22] |
KE Lei, YE Mingqiao, DANELLJAN M, et al. Segment anything in high quality[J]. Advances in Neural Information Processing Systems, 2023, 36: 29914-29934.
|
| [23] |
WEI Zhixiang, CHEN Lin, JIN Yi, et al. Stronger fewer & superior: harnessing vision foundation models for domain generalized semantic segmentation[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024.
|