测绘学报 ›› 2025, Vol. 54 ›› Issue (10): 1863-1876.doi: 10.11947/j.AGCS.2025.20250161

• 摄影测量学与遥感 • 上一篇    下一篇

面向极简交互的遥感地物精确批量提取框架

张志力1(), 姜慧伟2(), 胡翔云3   

  1. 1.国防科技大学电子科学学院,湖南 长沙 410073
    2.国家基础地理信息中心,北京 100830
    3.武汉大学遥感信息工程学院,湖北 武汉 430079
  • 收稿日期:2025-04-16 修回日期:2025-08-19 出版日期:2025-11-14 发布日期:2025-11-14
  • 通讯作者: 姜慧伟 E-mail:zhangzhili@nudt.edu.cn;jianghw@ngcc.cn
  • 作者简介:张志力(1996—),男,博士后,助理研究员,研究方向为遥感目标分割与识别。E-mail:zhangzhili@nudt.edu.cn
  • 基金资助:
    中国科协第八届青年人才托举工程项目;国家资助博士后研究人员计划(GZB20250998)

A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery

Zhili ZHANG1(), Huiwei JIANG2(), Xiangyun HU3   

  1. 1.College of Electrical Science and Technology, National University of Defense Technology, Changsha 410073, China
    2.National Geomatics Center of China, Beijing 100830, China
    3.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2025-04-16 Revised:2025-08-19 Online:2025-11-14 Published:2025-11-14
  • Contact: Huiwei JIANG E-mail:zhangzhili@nudt.edu.cn;jianghw@ngcc.cn
  • About author:ZHANG Zhili (1996—), male, postdoctoral fellow, assistant researcher, majors in target segmentation and recognition in remote sensing imagery. E-mail: zhangzhili@nudt.edu.cn
  • Supported by:
    The 8th Young Talent Support Program of the China Association for Science and Technology (CAST);The Postdoctoral Fellowship Program of CPSF(GZB20250998)

摘要:

高分辨率遥感影像地物提取是支撑智慧城市建设、自然资源监测等关键领域的重要技术,但现有全自动方法在实际应用中仍面临模型适应能力不足和人工标注成本高昂的双重挑战。针对上述问题,本文提出了一种基于极简交互(如点、一笔画、框等)的遥感影像地物高精度批量提取框架。通过系统分析现有交互式分割技术的局限性,本文创新性地构建了一个集成交互分割与同类地物批量检测算法的联合提取框架。该框架包含两大核心算法:①基于微调策略的一次性提示精确提取算法,实现在极简交互条件下的高质量地物分割;②同类地物快速检测算法,通过利用已有分割掩模实现同类地物的高效批量标注。此外,提取框架还包括地物提取结果的矢量化、规则化等后处理。试验结果表明,在建筑物、水体、林地等典型面状地物的标注任务中,本文方法在保持高精度的同时,显著减少了人工交互次数,其性能优于当前先进的SAM、EISeg等通用交互分割模型。本文方法为遥感影像样本的高效标注提供了创新性解决方案,对提升遥感信息智能解译的自动化水平和实际应用价值具有重要意义。

关键词: 图形提示, 遥感影像, 深度学习, 交互式分割, 地物提取

Abstract:

High-resolution remote sensing image object extraction is a critical technology supporting key areas such as smart city development and natural resource monitoring. However, existing fully automatic methods still face dual challenges in practical applications—limited model adaptability and high manual annotation costs. To address these issues, this paper proposes a high-precision object extraction framework for remote sensing imagery based on minimal interactions (e.g., points, strokes, boxes). By systematically analyzing the limitations of current interactive segmentation techniques, we innovatively construct a unified extraction framework that integrates precise interactive segmentation and batch identical-object detection. The framework comprises two core algorithms: ①A one-shot precision extraction algorithm based on fine-tuning strategies, enabling high-quality object segmentation under minimal interaction; ②A rapid detection algorithm for identical objects, which leverages existing segmentation masks to achieve efficient batch annotation of identical objects. In addition, the extraction framework includes empirical post-processing of geospatial extraction results to obtain vector extraction results. Experimental results on typical facet objects such as buildings, water bodies, and forested areas demonstrate that the proposed method significantly reduces user interactions while maintaining high segmentation accuracy. It outperforms state-of-the-art general-purpose segmentation models, such as segment anything model (SAM) and EISeg. This study provides an innovative solution for efficient annotation of remote sensing image samples and offers significant potential for advancing the automation and practical utility of intelligent remote sensing interpretation.

Key words: graphical prompts, remote sensing imagery, deep learning, interactive segmentation, object extraction

中图分类号: