| [1] |
FANG S, LI K, SHAO J, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
|
| [2] |
LIU W, JI X, LIU J, et al. A novel unsupervised change detection method with structure consistency and GFLICM based on UAV images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 91-102.
|
| [3] |
张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070
|
|
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070
|
| [4] |
ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4353-4361.
|
| [5] |
ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849.
|
| [6] |
DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of 2018 IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067.
|
| [7] |
ZHANG Wuxia, LU Xiaoqiang. The spectral-spatial joint learning for change detection in multispectral imagery[J]. Remote Sensing, 2019, 11(3): 240.
|
| [8] |
CHEN Hao, LI Wenyuan, SHI Zhenwei. Adversarial instance augmentation for building change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16.
|
| [9] |
PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382.
|
| [10] |
HUANG Gao, LIU Zhuang, VAN DER M L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
| [11] |
ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
|
| [12] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202
|
|
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202
|
| [13] |
梁哲恒, 黎宵, 邓鹏, 等. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540
|
|
LIANG Zheheng, LI Xiao, DENG Peng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540
|
| [14] |
ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bitemporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.
|
| [15] |
PENG Xueli, ZHONG Ruofei, LI Zhen, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7296-7307.
|
| [16] |
CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662-1684.
|
| [17] |
JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484.
|
| [18] |
SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16.
|
| [19] |
LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5): 811-815.
|
| [20] |
ZHANG Lin, HU Xiangyun, ZHANG Mi, et al. Object-level change detection with a dual correlation attention-guided detector[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 147-160.
|
| [21] |
CHEN Pan, ZHANG Bing, HONG Danfeng, et al. FCCDN: feature constraint network for VHR image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 101-119.
|
| [22] |
FANG Sheng, LI Kaiyu, LI Zhe. Changer: feature interaction is what you need for change detection[EB/OL]. [2023-09-01]. https://arxiv.org/abs/2209.08290v1.
|
| [23] |
CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geos-cience and Remote Sensing, 2021, 60: 1-14.
|
| [24] |
BANDARA W G C, PATEL V M. A Transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumper: IEEE, 2022: 207-210.
|
| [25] |
ZHENG Zhuo, ZHONG Yanfei, TIAN Shiqi, et al. ChangeMask: deep multi-task Encoder-Transformer-Decoder architecture for semantic change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 228-239.
|
| [26] |
CHEN Zhanlong, ZHOU Yuan, WANG Bin, et al. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 203-222.
|
| [27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| [28] |
DENG Jia, DONG Wei, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
|
| [29] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Gradcam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
|