| [1] |
刘海砚, 郭漩, 刘俊楠. 时空和语义结合的船舶轨迹数据压缩方法[J]. 测绘学报, 2023, 52(11): 1974-1982. DOI: .
doi: 10.11947/j.AGCS.2023.20210658
|
|
LIU Haiyan, GUO Xuan, LIU Junnan. A vessel trajectory data compression method combining spatio-temporal and semantic features[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1974-1982. DOI: .
doi: 10.11947/j.AGCS.2023.20210658
|
| [2] |
GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001, 26(1): 35-58.
|
| [3] |
PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
|
| [4] |
ZHANG Rui, WU Hanyue, YIN Zhenzhong, et al. Predictive clustering of vessel behavior based on hierarchical trajectory representation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 19496-19506.
|
| [5] |
JIANG Yan, LI Bo, ZHANG Hao, et al. A novel classification scheme of moving targets at sea based on ward's and K-means clustering[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering. Hohhot: ACM Press, 2018: 1-5.
|
| [6] |
ZHEN Rong, JIN Yongxing, HU Qinyou, et al. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier[J]. Journal of Navigation, 2017, 70(3): 648-670.
|
| [7] |
MA Wenyao, WU Zhaolin, YANG Jiaxuan, et al. Vessel motion pattern recognition based on one-way distance and spectral clustering algorithm[M]//Algorithms and Architectures for Parallel Processing. Cham: Springer International Publishing, 2014: 461-469.
|
| [8] |
GAO Miao, SHI Guoyou. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms[J]. Ocean Engineering, 2020, 205: 106919.
|
| [9] |
ZHAO Liangbin, SHI Guoyou, YANG Jiaxuan. An adaptive hierarchical clustering method for ship trajectory data based on DBSCAN algorithm[C]//Proceedings of 2017 IEEE International Conference on Big Data Analysis. Beijing: IEEE, 2017: 329-336.
|
| [10] |
ZHAO Liangbin, SHI Guoyou. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467.
|
| [11] |
LI Ye, REN Hongxiang. Visual analysis of vessel behaviour based on trajectory data: a case study of the Yangtze River Estuary[J]. ISPRS International Journal of Geo-Information, 2022, 11(4): 244.
|
| [12] |
WANG Lianhui, CHEN Pengfei, CHEN Linying, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach[J]. Journal of Marine Science and Engineering, 2021, 9(6): 566.
|
| [13] |
甄荣, 石自强. 一种基于高斯混合模型的船舶航迹聚类方法[J]. 船舶工程, 2021, 43(11): 139-143.
|
|
ZHEN Rong, SHI Ziqiang. Ship trajectory clustering method based on Gaussian mixture model[J]. Ship Engineering, 2021, 43(11): 139-143.
|
| [14] |
YAO Di, ZHANG Chao, ZHU Zhihua, et al. Learning deep representation for trajectory clustering[J]. Expert Systems, 2018, 35(2): e12252.
|
| [15] |
LIANG Maohan, LIU R W, LI Shichen, et al. An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation[J]. Ocean Engineering, 2021, 225: 108803.
|
| [16] |
WANG Chao, HUANG Jiahui, WANG Yongheng, et al. A deep spatiotemporal trajectory representation learning framework for clustering[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7687-7700.
|
| [17] |
甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测:研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127.
|
|
ZHEN Rong, SHAO Zheping, PAN Jiacai. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-Information Science, 2021, 23(12): 2111-2127.
|
| [18] |
ZHONG Hanyang, SONG Xin, YAN Zhenguo. Vessel sailing patterns analysis from S-AIS data based on K-means clustering algorithm[C]//Proceedings of the 4th International Conference on Big Data Analytics. Suzhou: IEEE, 2019: 10-13.
|
| [19] |
LIU Lei, ZHANG Yong, HU Yue, et al. A hybrid-clustering model of ship trajectories for maritime traffic patterns analysis in port area[J]. Journal of Marine Science and Engineering, 2022, 10(3): 342.
|
| [20] |
安健鹏, 李海霞, 雷亚丽, 等. 基于大数据的船舶活动轨迹规律挖掘方法[J]. 火力与指挥控制, 2024, 49(4): 156-163.
|
|
AN Jianpeng, LI Haixia, LEI Yali, et al. Mining method of ship activity trajectory pattern based on big data[J]. Fire Control & Command Control, 2024, 49(4): 156-163.
|
| [21] |
ZHANG Yuanqiang, MA Yong, LIU Jiao. Ship trajectory segmentation and semisupervised clustering via geospatial background knowledge[J]. Ocean Engineering, 2024, 304: 117872.
|
| [22] |
刘海杨, 孟令航, 林仲航, 等. 基于轨迹点聚类的航路发现方法[J]. 计算机应用, 2022, 42(3): 890-894.
|
|
LIU Haiyang, MENG Linghang, LIN Zhonghang, et al. Route discovery method based on trajectory point clustering[J]. Journal of Computer Applications, 2022, 42(3): 890-894.
|
| [23] |
张鹏鑫, 李连营, 杨敏, 等. 顾及运动行为特征变化的船舶轨迹分类模型[J]. 测绘科学, 2023, 48(5): 25-34.
|
|
ZHANG Pengxin, LI Lianying, YANG Min, et al. A ship trajectory classification model considering changes in characteristics of motion behavior[J]. Science of Surveying and Mapping, 2023, 48(5): 25-34.
|
| [24] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI. Cham: Springer International Publishing, 2015: 234-241.
|
| [25] |
李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7, 148.
|
|
LI Wenjie, YAN Shiqiang, JIANG Ying, et al. Research on method of self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2019, 55(5): 1-7, 148.
|
| [26] |
WANG Lianhui, CHEN Pengfei, CHEN Linying, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach[J]. Journal of Marine Science and Engineering, 2021, 9(6): 566.
|
| [27] |
万佳, 胡大裟, 蒋玉明. 多密度自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2022, 58(2): 78-85.
|
|
WAN Jia, HU Dasha, JIANG Yuming. Research on method of multi-density self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2022, 58(2): 78-85.
|
| [28] |
ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
|
| [29] |
DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2): 224-227.
|