
测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 1-9.
• 综述 •
杨元喜1,2(
), 任夏1,2, 张强3,4, 侯明强5, 肖定邦6, 朱凌晓6
收稿日期:2025-10-19
修回日期:2025-12-15
发布日期:2026-02-13
作者简介:杨元喜(1956—),男,博士,研究员,中国科学院院士,研究方向为大地测量与卫星导航。E-mail:yuanxi_yang@163.com
基金资助:
Yuanxi YANG1,2(
), Xia REN1,2, Qiang ZHANG3,4, Mingqiang HOU5, Dingbang XIAO6, Lingxiao ZHU6
Received:2025-10-19
Revised:2025-12-15
Published:2026-02-13
About author:YANG Yuanxi (1956—), male, PhD, researcher, academician of Chinese Academy of Science, majors in dynamic geodetic data and satellite navigation data processing. E-mail: yuanxi_yang@163.com
Supported by:摘要:
量子定位、导航、定时(量子PNT)技术是量子物理、量子传感与自感知导航和量子计时相结合的交叉技术,量子PNT传感器是隐蔽、连续、稳健式自主PNT终端发展的重要方向。本文定义了量子PNT的概念和内涵,论述了量子PNT与现有PNT体系的关系,包括北斗PNT、综合PNT、弹性PNT和智能PNT等,讨论了量子PNT发展的重要性与意义,梳理了量子PNT发展现状和存在的问题,重点分析了量子PNT研究内容、关键技术及面临的挑战,分别描述量子PNT供给侧和应用侧主要发展方向,供给侧应侧重量子PNT集成原理及量子噪声操控与抑制等技术;应用侧应聚焦量子传感器与综合PNT终端的集成,侧重发展芯片化量子PNT传感器、多原理PNT微型化集成终端研制与应用,核心目标是为安全PNT、可信PNT、自主PNT服务提供新的途径。
中图分类号:
杨元喜, 任夏, 张强, 侯明强, 肖定邦, 朱凌晓. 量子PNT发展及其关键技术[J]. 测绘学报, 2026, 55(1): 1-9.
Yuanxi YANG, Xia REN, Qiang ZHANG, Mingqiang HOU, Dingbang XIAO, Lingxiao ZHU. The development and key technologies of quantum PNT[J]. Acta Geodaetica et Cartographica Sinica, 2026, 55(1): 1-9.
| [1] | MCNEFF J. Changing the game changer, the way ahead for military PNT[EB/OL]. (2010-10-25) [2022-6-20]. https://insidegnss.com/military-pnt-the-way-ahead. |
| [2] | United States National Security Space Office. National positioning, navigation, and timing architecture study final report[EB/OL]. [2022-01-31]. https://rosap.ntl.bts.gov/view/dot/34816. |
| [3] | United States National Security Space Office. National positioning, navigation, and timing architecture: implementation plan[EB/OL]. [2022-01-31]. https://rosap.ntl.bts.gov/view/dot/18293. |
| [4] | The National Science and Technology Council. National research and development plan for positioning navigation, and timing resilience[EB/OL]. [2022-01-31]. https://www.whitehouse.gov/wp-content/uploads/2021/08/Position_Navigation_Timing_RD_Plan-August-2021.Pdf. |
| [5] | KELLEY M. Defense primer: quantum technology[EB/OL]. [2025-09-30]. https://www.congress.gov/crs-product/IF11836. |
| [6] |
杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. DOI: .
doi: 10.11947/j.AGCS.2016.20160127 |
|
YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510. DOI: .
doi: 10.11947/j.AGCS.2016.20160127 |
|
| [7] | YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 1-7. |
| [8] |
杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8): 1006-1012. DOI: .
doi: 10.11947/j.AGCS.2021.20210051 |
|
YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1006-1012. DOI: .
doi: 10.11947/j.AGCS.2021.20210051 |
|
| [9] | YANG Yuanxi, REN Xia, JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 66(5): 929-938. |
| [10] | YANG Yuanxi, YAO Zheng, MAO Yue, et al. Resilient satellite-based PNT system design and key technologies[J]. Science China Earth Sciences, 2025, 68(3): 669-682. |
| [11] | REN Xia, YANG Yuanxi. Development of comprehensive PNT and resilient PNT[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 1-8. |
| [12] | BATTELIER B, BARRETT B, FOUCHÉ L, et al. Development of compact cold-atom sensors for inertial navigation[C]//Proceedings of 2016 Quantum Optics. Brussels: SPIE, 2016: 990004. |
| [13] | 严吉中, 李攀, 刘元正. 原子陀螺基本概念及发展趋势分析[J]. 压电与声光, 2015, 37(5): 810-817. |
| YAN Jizhong, LI Pan, LIU Yuanzheng. Analysis on the basic concept and the development tendency of atomic gyroscopes[J]. Piezoelectrics & Acoustooptics, 2015, 37(5): 810-817. | |
| [14] | MARSHALL M C, CASTILLO D A R, ARTHUR-DWORSCHACK W J, et al. High-stability single-ion clock with 5.5×10-19 systematic uncertainty[J]. Physical Review Letters, 2025, 135(3): 033201. |
| [15] | Top secret lab develops atomic clock using quantum technology[EB/OL]. [2025-10-04]. https://www.gov.uk/government/news/topsecret-lab-develops-atomic-clock-using-quantum-technology. |
| [16] | 谭立龙, 张彦涛, 王鹏, 等. 原子干涉重力仪测量原理与发展现状[J]. 地球物理学进展, 2020, 35(4): 1310-1316. |
| TAN Lilong, ZHANG Yantao, WANG Peng, et al. Measurement principle and development status of atomic interference gravimeter[J]. Progress in Geophysics, 2020, 35(4): 1310-1316. | |
| [17] | SCHMIDT M, SENGER A, HAUTH M, et al. A mobile high-precision absolute gravimeter based on atom interferometry[J]. Gyroscopy and Navigation, 2011, 2(3): 170-177. |
| [18] | FREIER C, HAUTH M, SCHKOLNIK V, et al. Mobile quantum gravity sensor with unprecedented stability[J]. Journal of Physics: Conference Series, 2016, 723(1): 012050. |
| [19] | KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599. |
| [20] | PAONE D. Nanoscale magnetic resonance spectroscopy with nitrogen-vacancy centers in diamond[D]. Stuttgart: University Stuttgart, 2021. |
| [21] | RONDIN L, TETIENNE J P, HINGANT T, et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 2014, 77(5): 056503. |
| [22] | MURADOGLU M, JOHNSSON M T, WILSON N M, et al. Quantum-assured magnetic navigation achieves positioning accuracy better than a strategic-grade INS in airborne and ground-based field trials[EB/OL]. [2025-10-04]. https://arxiv.org/abs/2504.08167. |
| [23] | HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610. |
| [24] | DUAN Xiaochun, DENG Xiaobing, ZHOU Minkang, et al. Test of the universality of free fall with atoms in different spin orientations[J]. Physical Review Letters, 2016, 117(2): 023001. |
| [25] | LI Chenyang, CHEN Luokan, YANG Xuan, et al. Drift-free continuous gravity measurement and application analysis of a high-precision atom gravimeter[J]. Physical Review Applied, 2025, 24(1): 014045. |
| [26] | NEWELL D. CCM. G-K2.2023: key comparison and additional comparison[EB/OL]. [2025-10-04]. https://www.bipm.org/documents/d/guest/ccm-g-k2-2023. |
| [27] | 白金海, 马慧娟, 胡栋, 等. 冷原子重力仪研究进展综述[J]. 宇航计测技术, 2023, 43(5): 1-10. |
| BAI Jinhai, MA Huijuan, HU Dong, et al. Review of research advance on cold-atom gravimeter[J]. Journal of Astronautic Metrology and Measurement, 2023, 43(5): 1-10. | |
| [28] | 张旭, 颜树华, 李期学, 等. 基于车载原子干涉仪的野外流动重力测量[J]. 仪器仪表学报, 2023, 44(9): 96-103. |
| ZHANG Xu, YAN Shuhua, LI Qixue, et al. Mobile gravity surveys in the field based on vehicle-mounted atom interferometer[J]. Chinese Journal of Scientific Instrument, 2023, 44(9): 96-103. | |
| [29] | MAO Dekai, DENG Xiaobing, LUO Huaqing, et al. A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant[J]. The Review of Scientific Instruments, 2021, 92(5): 053202. |
| [30] | 宋宏伟. 基于冷原子干涉仪的重力梯度精密测量研究[D]. 武汉: 华中科技大学, 2017. |
| SONG Hongwei. Precise measurement of gravity gradient based on the cold atom interferometer[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [31] | LYU Wei, ZHONG Jiaqi, ZHANG Xiaowei, et al. Compact high-resolution absolute-gravity gradiometer based on atom interferometers[J]. Physical Review Applied, 2022, 18(5): 054091. |
| [32] | 徐炜豪, 吕伟, 仲嘉琪, 等. 原子干涉重力梯度仪发展现状与分析[J]. 导航与控制, 2022, 21(5): 80-90, 65. |
| XU Weihao, LÜ Wei, ZHONG Jiaqi, et al. Development status and analysis of gravity gradiometer based on atom interferometer[J]. Navigation and Control, 2022, 21(5): 80-90, 65. | |
| [33] | XU W, LÜ W, ZHONG J, et al. Development status and analysis of gravity gradiometer based on atom interferometer[J]. Navigation and Control, 2022, 21(5/6): 80-90. |
| [34] | 杨公鼎, 翁堪兴, 吴彬, 等. 量子重力梯度仪研究进展[J]. 导航定位与授时, 2021, 8(2): 18-29. |
| YANG Gongding, WENG Kanxing, WU Bin, et al. Research progress of quantum gravity gradiometer[J]. Navigation Positioning and Timing, 2021, 8(2): 18-29. | |
| [35] | SONG Hongwei, ZHONG Jiaqi, CHEN Xi, et al. Normalized detection by using the blow-away signal in cold atom interferometry[J]. Optics Express, 2016, 24(25): 28392-28399. |
| [36] | 孙兵锋, 安芳芳, 王植彬, 等. 铯光泵原子磁强计研制进展[J]. 导航定位与授时, 2017, 4(5): 65-69. |
| SUN Bingfeng, AN Fangfang, WANG Zhibin, et al. Development of an optically pumped cesium atomic magnetometer[J]. Navigation Positioning and Timing, 2017, 4(5): 65-69. | |
| [37] | 骆曼箬, 李绍良, 黄艺明, 等. 原子陀螺研究进展及展望[J]. 测控技术, 2023, 42(10): 1-10. |
| LUO Manruo, LI Shaoliang, HUANG Yiming, et al. Review and prospect of atomic gyroscope development[J]. Measurement & Control Technology, 2023, 42(10): 1-10. | |
| [38] | 刘院省, 阚宝玺, 石猛, 等. 原子陀螺仪技术研究进展[C]//第四届航天电子战略研究论坛论文集(新型惯性器件专刊). 北京: 北京航天控制仪器研究所中国航天科技集团有限公司量子工程研究中心, 2018: 11-17, 23. |
| LIU Yuansheng, KAN Baoxi, SHI Meng, et al. Research progress of atomic gyroscope technology[C]//Proceedings of the 4th Aerospace Electronics Strategic Research Forum (Special Issue on New Inertial Devices). Beijing: Beijing Aerospace Control Instrument Institute, Quantum Engineering Research Center of China Aerospace Science and Technology Corporation.2018: 11-17, 23. | |
| [39] | LI Jinting, CHEN Xi, ZHANG Danfang, et al. Realization of a cold atom gyroscope in space[J]. National Science Review, 2025, 12(4): nwaf012. |
| [40] | HE Meng, CHEN Xi, FANG Jie, et al. The space cold atom interferometer for testing the equivalence principle in the China Space Station[J]. NPJ Microgravity, 2023, 9(1): 58. |
| [41] | 王安琪, 孟至欣, 李营营, 等. 连续冷原子束干涉陀螺仪研究进展[J]. 导航定位与授时, 2017, 4(1): 77-84. |
| WANG Anqi, MENG Zhixin, LI Yingying, et al. Research progress in a continuous cold atomic beam interferometer gyroscope[J]. Navigation Positioning and Timing, 2017, 4(1): 77-84. | |
| [42] | MENG Zhixin, YAN Peiqiang, WANG Shengzhe, et al. Closed-loop dual-atom-interferometer inertial sensor with continuous cold atomic beams[J]. Physical Review Applied, 2024, 21(3): 034050. |
| [43] | 张伟佳, 范文峰, 范时秒, 等. 原子自旋惯性测量的偏振误差分析及抑制方法[J]. 中国激光, 2022, 49(19): 139-145. |
| ZHANG Weijia, FAN Wenfeng, FAN Shimiao, et al. Analysis and suppression of polarization error in atomic spin inertial measurement[J]. Chinese Journal of Lasers, 2022, 49(19): 139-145. | |
| [44] | LIU Zijie, WANG Zhiyang, QIN Xiaomin, et al. Turn-key Voigt optical frequency standard[J]. Photonics Research, 2025, 13(4): 1083-1093. |
| [45] | ZHANG Xiangpeng, ZHANG Xuguang, CHEN Yujun, et al. Microcomb-synchronized optoelectronics[J]. Nature Electronics, 2025, 8(4): 322-330. |
| [46] | LI Jie, CUI Xingyang, JIA Zhipeng, et al. A strontium lattice clock with both stability and uncertainty below 5×10-18[J]. Metrologia, 2024, 61(1): 015006. |
| [47] | LU Xiaotong, GUO Feng, LIU Yanyan, et al. NTSC SrII optical lattice clock with uncertainty of 2×10-18[J]. Metrologia, 2025, 62(3): 035007. |
| [48] | SHEN Qi, GUAN Jianyu, REN Jigang, et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 2022, 610(7933): 661-666. |
| [49] | CHEN Yanwei, LIAN Mengzhe, HAN Jinjian, et al. Absolute ranging over 113 km with nanometer precision[J]. National Science Review, 2025, 12(11): nwaf352. |
| [1] | 李博峰, 陈龙, 袁雷童. GNSS多基线联合解算的高精度变形监测方法[J]. 测绘学报, 2025, 54(12): 2116-2128. |
| [2] | 耿涛, 李强, 程凌岳, 刘经南. GNSS与低轨卫星相对论效应改正方法[J]. 测绘学报, 2025, 54(12): 2129-2141. |
| [3] | 张守建, 曹新运, 葛玉龙, 沈飞. GLONASS-K与GLONASS-M+卫星姿态建模对卫星钟差估计和精密单点定位的影响[J]. 测绘学报, 2025, 54(12): 2142-2152. |
| [4] | 陈健, 王佳辉, 赵兴旺, 刘超, 刘春阳, 余学祥. BDS-3/Galileo星座多频弱电离层组合单历元RTK定位优化方法[J]. 测绘学报, 2025, 54(12): 2153-2167. |
| [5] | 李新瑞, 曲轩宇, 张勤, 舒宝, 孟岭恩, 许豪, 张双成, 黄观文, 武翰文, 王利. 数据驱动的PPP-RTK多径误差缓解方法及其在变形监测中的应用[J]. 测绘学报, 2025, 54(12): 2168-2181. |
| [6] | 高佳鑫, 隋心, 王长强, 徐爱功, 史政旭. 稳定静态点云簇支持的LiDAR SLAM回环检测方法[J]. 测绘学报, 2025, 54(12): 2194-2205. |
| [7] | 谷宇鹏, 刘万科, 张小红, 胡捷, 胡树杰, 雷维豪, 郑凯. 鱼眼图像支持的GNSS随机模型神经网络生成方法[J]. 测绘学报, 2025, 54(12): 2206-2218. |
| [8] | 陈志键. LiDAR SLAM/INS/UWB多源信息融合定位理论方法研究[J]. 测绘学报, 2025, 54(12): 2290-2290. |
| [9] | 饶维龙. 基于GRACE时变重力的青藏高原质量迁移与地壳变形研究[J]. 测绘学报, 2025, 54(12): 2291-2291. |
| [10] | 杨柳. 精密单点定位反演大气水汽关键模型研究[J]. 测绘学报, 2025, 54(12): 2294-2294. |
| [11] | 齐霁. 广义监督信号引导的可见光遥感影像解译基础模型[J]. 测绘学报, 2025, 54(12): 2296-2296. |
| [12] | 郭树人, 蔡洪亮, 高为广, 周巍, 耿长江, 李罡, 董明, 宿晨庚, 姜坤, 孟轶男, 陈雷, 潘军洋, 李凯, 李奇奋, 唐小妹, 张爽娜, 胡小工. 面向精确可信PNT服务的新型全球卫星导航系统架构[J]. 测绘学报, 2025, 54(11): 1934-1953. |
| [13] | 顾元元, 姚旭, 安璐, 乔刚, 郝彤. 基于高精度动态GNSS测线的中国南极内陆科考路线平整度分析与评估[J]. 测绘学报, 2025, 54(11): 1968-1979. |
| [14] | 宋瀚昀, 李昕, 黄观文, 李航. 无人机气压计测高模型精化及GNSS/SINS组合定位增强[J]. 测绘学报, 2025, 54(11): 1980-1991. |
| [15] | 李博. BDS-3/GNSS PPP-RTK增强产品估计和可信定位方法[J]. 测绘学报, 2025, 54(11): 2097-2097. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||