Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1300-1307.doi: 10.11947/j.AGCS.2017.20170453
Previous Articles Next Articles
ZHANG Qin, HUANG Guanwen, YANG Chengsheng
Received:
2017-08-08
Revised:
2017-09-11
Online:
2017-10-20
Published:
2017-10-26
Supported by:
CLC Number:
ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision Space Observation Technique for Geological Hazard Monitoring and Early Warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.
[1] 殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报, 2004, 15(2):1-8. YIN Yueping. Initial Study on the Hazard-relief Strategy of Geological Hazard in China[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2):1-8. [2] BERARIU R, FIKAR C, GRONALT M, et al. Understanding the Impact of Cascade Effects of Natural Disasters on Disaster Relief Operations[J]. International Journal of Disaster Risk Reduction, 2015(12):350-356. [3] 童庆禧. 空间对地观测与全球变化的人文因素[J]. 地球科学进展, 2005, 20(1):1-5. TONG Qingxi. Earth Observation from Space and Human Demension for Global Change Studies[J]. Advance in Earth Sciences, 2005, 20(1):1-5. [4] 林宗坚, 李德仁, 胥燕婴. 对地观测技术最新进展评述[J]. 测绘科学, 2011, 36(4):5-8. LIN Zongjian, LI Deren, XU Yanying. General Review on the New Progress of Earth Observations[J]. Science of Surveying and Mapping, 2011, 36(4):5-8. [5] TOMÁS R, LI Zhenhong. Earth Observations for Geohazards:Present and Future Challenges[J]. Remote Sensing, 2017, 9(3):194. DOI:10.3390/rs9030194. [6] 韩子夜, 薛星桥. 地质灾害监测技术现状与发展趋势[J]. 中国地质灾害与防治学报, 2005, 16(3):138-141. HAN Ziye, XUE Xingqiao. Status and Development Trend of Monitoring Technology for Geological Hazards[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(3):138-141. [7] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping Small Elevation Changes over Large Areas:Differential Radar Interferometry[J]. Journal of Geophysical Research, 1989, 94(B7):9183-9191. [8] MASSONNET D, ROSSI M, CARMONA C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433):138-142. [9] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry[J]. Nature, 1995, 375(6532):567-570. [10] VAN DER KOOIJ M W A, VAN HALSEMA D, GROENEWOUD W, et al. Satellite Radar Measurements for Land Subsidence Detection[C]//Proceedings of the Fifth International Symposium on Land Subsidence. Rotterdam:A. A. Balkema, 1995:169-177. [11] ACHACHE J, FRUNEAU B, DELACOURT C. Applicability of SAR Interferometry for Monitoring of Landslides[C]//Proceedings of the Second International Workshop Held 6-8 December, 1995 in London. London, UK:European Space Agency, 1996(383):165. [12] TONG X, SANDWELL D T, SMITH-KONTER B. High-resolution Interseismic Velocity Data Along the San Andreas Fault from GPS and InSAR[J]. Journal of Geophysical Research, 2013, 118(1):369-389. DOI:10.1029/2012JB009442. [13] LU Zhong, DZURISIN D. InSAR Imaging of Aleutian Volcanoes:Monitoring A Volcanic Arc from Space[M]. Berlin Heidelberg:Springer, 2014:390. [14] ZHANG Qin, ZHU Wu, DING Xiaoli, et al. Two-dimensional Deformation Monitoring over Qingxu (China) by Integrating C-, L-and X-Bands SAR Images[J]. Remote Sensing Letters, 2014, 51(1):27-36. [15] SAMSONOV S V, D'OREYE N. Multidimensional Small Baseline Subset (MSBAS) for Two-dimensional Deformation Analysis:Case Study Mexico City[J]. Canadian Journal of Remote Sensing, 2017, 43(4):318-329. DOI:10.1080/07038992.2017.1344926. [16] ARMENAKIS C, LEDUC F, CYR I, et al. A Comparative Analysis of Scanned Maps and Imagery for Mapping Applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(5-6):304-314. [17] JABOYEDOFF M, OPPIKOFER T, ABELLÁN A, et al. Use of LiDAR in Landslide Investigations:A Review[J]. Natural Hazards, 2012, 61(1):5-28. DOI:10.1007/s11069-010-9634-2. [18] MARKS K, BATES P. Integration of High-resolution Topographic Data with Floodplain Flow Models[J]. Hydrological Processes, 2000, 14(11-12):2109-2122. [19] ARTUSO R, BOVET S, STREILEIN A. Practical Methods for the Verification of Countrywide Terrain and Surface Models[C]//International Archives of Photogrammetry and Remote Sensing. Dresden, Germany:[s.n.], 2003. [20] 徐景中, 万幼川, 张圣望. 基于机载激光雷达点云的断裂线自动提取方法[J]. 计算机应用, 2008, 28(5):1214-1216. XU Jingzhong, WAN Youchuan, ZHANG Shengwang. Automatic Breakline Extraction from LIDAR Point Clouds[J]. Journal of Computer Applications, 2008, 28(5):1214-1216. [21] 马洪超, 姚春静, 张生德. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J]. 遥感学报, 2008, 12(6):925-932. MA Hongchao, YAO Chunjing, ZHANG Shengde. Some Technical Issues of Airborne LIDAR System Applied to Wenchuan Earthquake Relief works[J]. Journal of Remote Sensing, 2008, 12(6):925-932. [22] 刘圣伟, 郭大海, 陈伟涛, 等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 2012, 39(2):507-517. LIU Shengwei, GUO Dahai, CHEN Weitao, et al. The Application of Airborne Lidar Technology in Landslide Investigation and Monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2):507-517. [23] 李润生, 冯伍法, 张志远, 等. 基于高分辨率遥感影像的道路损毁评估方法[J]. 海洋测绘, 2012, 32(5):63-65. LI Runsheng, FENG Wufa, ZHANG Zhiyuan, et al. An Evaluation Method for Road Damage Based on High Resolution Satellite Image[J]. Hydrographic Surveying and Charting, 2012, 32(5):63-65. [24] 唐川, 张军, 万石云, 等. 基于高分辨率遥感影像的城市泥石流灾害损失评估[J]. 地理科学, 2006, 26(3):358-363. TANG Chuan, ZHANG Jun, WAN Shiyun, et al. Loss Evaluation of Urban Debris Flow Hazard Using High Spatial Resolution Satellite Imagery[J]. Scientia Geographica Sinica, 2006, 26(3):358-363. [25] 王治华, 徐起德, 徐斌. 岩门村滑坡高分辨率遥感调查与机制分析[J]. 岩石力学与工程学报, 2009, 28(9):1810-1818. WANG Zhihua, XU Qide, XU Bin. High Resolution Remote Sensing Survey and Mechanism Analysis for Yanmen Village Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1810-1818. [26] 王利. 地质灾害高精度GPS监测关键技术研究[D]. 西安:长安大学, 2014. WANG Li. A Study on Key Technology of High Precision GPS Monitoring for Geological Hazard[D]. Xi'an:Chang'an University, 2014. [27] 张勤, 黄观文, 王利, 等. GPS在西安市地面沉降与地裂缝监测中的应用研究[J]. 工程地质学报, 2007, 15(6):828-833. ZHANG Qin, HUANG Guanwen, WANG Li, et al. GPS Monitoring and Surveying on Land Subsidence and Land Fissure in Xi'an City[J]. Journal of Engineering Geology, 2007, 15(6):828-833. [28] 吴北平, 李征航, 徐绍铨. GPS定位技术在三峡库区崩滑地质灾害监测中的试验分析[J]. 地球科学——中国地质大学学报, 2001, 26(6):648-652. WU Beiping, LI Zhenghang, XU Shaoquan. Application of GPS Satellite Positioning Technique to Monitoring of Landslides in Three Gorges Dam[J]. Earth Science:Journal of China University of Geosciences, 2001, 26(6):648-652. [29] 张勤, 黄观文, 丁晓光, 等. 顾及板块运动、稳定性和系统偏差的高精度GPS监测基准研究与实现[J]. 地球物理学报, 2009, 52(12):3158-3165. ZHANG Qin, HUANG Guanwen, DING Xiaoguang, et al. Research and Realization of High-Precision GPS Datum, Considering Plate Movement, Stability and System Errors[J]. Chinese Journal of Geophysics, 2009, 52(12):3158-3165. [30] ROERING J J, STIMELY L L, MACKEY B H, et al. Using DInSAR, Airborne LiDAR, and Archival Air Photos to Quantify Landsliding and Sediment Transport[J]. Geophysical Research Letters, 2009, 36(19):L19402. [31] CHEN Roufei, CHANG K J, ANGELIER J, et al. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data:the 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake[J]. Engineering Geology, 2006, 88(3-4):160-172. [32] MEISINA C, ZUCCA F, FOSSATI D, et al. Ground Deformation Monitoring by Using the Permanent Scatterers Technique:the Example of the Oltrepo Pavese (Lombardia, Italy)[J]. Engineering Geology, 2006, 88(3-4):240-259. [33] FARINA P, COLOMBO D, FUMAGALLI A, et al. Permanent Scatterers for Landslide Investigations:Outcomes from the ESA-SLAM Project[J]. Engineering Geology, 2006, 88(3-4):200-217. [34] 张勤, 赵超英, 王利. 重庆武隆-南川地区地质灾害InSAR监测报告[R]. 西安:长安大学, 2014. ZHANG Qin, ZHAO Chaoying, WANG Li. Report on InSAR Monitoring of Geological Hazards in Wulong-Nanchuan Area[R]. Xi'an:Chang'an University, 2014. [35] CASAGLI N, CIGNA F, BIANCHINI S, et al. Landslide Mapping and Monitoring by Using Radar and Optical Remote Sensing:Examples from the EC-FP7 Project SAFER[J]. Remote Sensing Applications:Society and Environment, 2016(4):92-108. [36] CIAMPALINI A, RASPINI F, FRODELLA W, et al. The Effectiveness of High-Resolution LiDAR Data Combined with PSInSAR Data in Landslide Study[J]. Landslides, 2016, 13(2):399-410. |
[1] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[2] | DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. |
[3] | YUAN Yunbin, HOU Pengyu, ZHANG Baocheng. GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1225-1238. |
[4] | JIN Shuanggen, WANG Qisheng, SHI Qiqi. Parameters estimation and applications from single- to five-frequency multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1239-1248. |
[5] | LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293. |
[6] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[7] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[8] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[9] | LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. |
[10] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[11] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[12] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[13] | YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. |
[14] | DENG Zhiguo, WANG Jungang, GE Maorong. The GBM rapid product and the improvement from undifferenced ambiguity resolution [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. |
[15] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||