Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1300-1307.doi: 10.11947/j.AGCS.2017.20170453
Previous Articles Next Articles
ZHANG Qin, HUANG Guanwen, YANG Chengsheng
Received:2017-08-08
Revised:2017-09-11
Online:2017-10-20
Published:2017-10-26
Supported by:CLC Number:
ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision Space Observation Technique for Geological Hazard Monitoring and Early Warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.
| [1] 殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报, 2004, 15(2):1-8. YIN Yueping. Initial Study on the Hazard-relief Strategy of Geological Hazard in China[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2):1-8. [2] BERARIU R, FIKAR C, GRONALT M, et al. Understanding the Impact of Cascade Effects of Natural Disasters on Disaster Relief Operations[J]. International Journal of Disaster Risk Reduction, 2015(12):350-356. [3] 童庆禧. 空间对地观测与全球变化的人文因素[J]. 地球科学进展, 2005, 20(1):1-5. TONG Qingxi. Earth Observation from Space and Human Demension for Global Change Studies[J]. Advance in Earth Sciences, 2005, 20(1):1-5. [4] 林宗坚, 李德仁, 胥燕婴. 对地观测技术最新进展评述[J]. 测绘科学, 2011, 36(4):5-8. LIN Zongjian, LI Deren, XU Yanying. General Review on the New Progress of Earth Observations[J]. Science of Surveying and Mapping, 2011, 36(4):5-8. [5] TOMÁS R, LI Zhenhong. Earth Observations for Geohazards:Present and Future Challenges[J]. Remote Sensing, 2017, 9(3):194. DOI:10.3390/rs9030194. [6] 韩子夜, 薛星桥. 地质灾害监测技术现状与发展趋势[J]. 中国地质灾害与防治学报, 2005, 16(3):138-141. HAN Ziye, XUE Xingqiao. Status and Development Trend of Monitoring Technology for Geological Hazards[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(3):138-141. [7] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping Small Elevation Changes over Large Areas:Differential Radar Interferometry[J]. Journal of Geophysical Research, 1989, 94(B7):9183-9191. [8] MASSONNET D, ROSSI M, CARMONA C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433):138-142. [9] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry[J]. Nature, 1995, 375(6532):567-570. [10] VAN DER KOOIJ M W A, VAN HALSEMA D, GROENEWOUD W, et al. Satellite Radar Measurements for Land Subsidence Detection[C]//Proceedings of the Fifth International Symposium on Land Subsidence. Rotterdam:A. A. Balkema, 1995:169-177. [11] ACHACHE J, FRUNEAU B, DELACOURT C. Applicability of SAR Interferometry for Monitoring of Landslides[C]//Proceedings of the Second International Workshop Held 6-8 December, 1995 in London. London, UK:European Space Agency, 1996(383):165. [12] TONG X, SANDWELL D T, SMITH-KONTER B. High-resolution Interseismic Velocity Data Along the San Andreas Fault from GPS and InSAR[J]. Journal of Geophysical Research, 2013, 118(1):369-389. DOI:10.1029/2012JB009442. [13] LU Zhong, DZURISIN D. InSAR Imaging of Aleutian Volcanoes:Monitoring A Volcanic Arc from Space[M]. Berlin Heidelberg:Springer, 2014:390. [14] ZHANG Qin, ZHU Wu, DING Xiaoli, et al. Two-dimensional Deformation Monitoring over Qingxu (China) by Integrating C-, L-and X-Bands SAR Images[J]. Remote Sensing Letters, 2014, 51(1):27-36. [15] SAMSONOV S V, D'OREYE N. Multidimensional Small Baseline Subset (MSBAS) for Two-dimensional Deformation Analysis:Case Study Mexico City[J]. Canadian Journal of Remote Sensing, 2017, 43(4):318-329. DOI:10.1080/07038992.2017.1344926. [16] ARMENAKIS C, LEDUC F, CYR I, et al. A Comparative Analysis of Scanned Maps and Imagery for Mapping Applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(5-6):304-314. [17] JABOYEDOFF M, OPPIKOFER T, ABELLÁN A, et al. Use of LiDAR in Landslide Investigations:A Review[J]. Natural Hazards, 2012, 61(1):5-28. DOI:10.1007/s11069-010-9634-2. [18] MARKS K, BATES P. Integration of High-resolution Topographic Data with Floodplain Flow Models[J]. Hydrological Processes, 2000, 14(11-12):2109-2122. [19] ARTUSO R, BOVET S, STREILEIN A. Practical Methods for the Verification of Countrywide Terrain and Surface Models[C]//International Archives of Photogrammetry and Remote Sensing. Dresden, Germany:[s.n.], 2003. [20] 徐景中, 万幼川, 张圣望. 基于机载激光雷达点云的断裂线自动提取方法[J]. 计算机应用, 2008, 28(5):1214-1216. XU Jingzhong, WAN Youchuan, ZHANG Shengwang. Automatic Breakline Extraction from LIDAR Point Clouds[J]. Journal of Computer Applications, 2008, 28(5):1214-1216. [21] 马洪超, 姚春静, 张生德. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J]. 遥感学报, 2008, 12(6):925-932. MA Hongchao, YAO Chunjing, ZHANG Shengde. Some Technical Issues of Airborne LIDAR System Applied to Wenchuan Earthquake Relief works[J]. Journal of Remote Sensing, 2008, 12(6):925-932. [22] 刘圣伟, 郭大海, 陈伟涛, 等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 2012, 39(2):507-517. LIU Shengwei, GUO Dahai, CHEN Weitao, et al. The Application of Airborne Lidar Technology in Landslide Investigation and Monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2):507-517. [23] 李润生, 冯伍法, 张志远, 等. 基于高分辨率遥感影像的道路损毁评估方法[J]. 海洋测绘, 2012, 32(5):63-65. LI Runsheng, FENG Wufa, ZHANG Zhiyuan, et al. An Evaluation Method for Road Damage Based on High Resolution Satellite Image[J]. Hydrographic Surveying and Charting, 2012, 32(5):63-65. [24] 唐川, 张军, 万石云, 等. 基于高分辨率遥感影像的城市泥石流灾害损失评估[J]. 地理科学, 2006, 26(3):358-363. TANG Chuan, ZHANG Jun, WAN Shiyun, et al. Loss Evaluation of Urban Debris Flow Hazard Using High Spatial Resolution Satellite Imagery[J]. Scientia Geographica Sinica, 2006, 26(3):358-363. [25] 王治华, 徐起德, 徐斌. 岩门村滑坡高分辨率遥感调查与机制分析[J]. 岩石力学与工程学报, 2009, 28(9):1810-1818. WANG Zhihua, XU Qide, XU Bin. High Resolution Remote Sensing Survey and Mechanism Analysis for Yanmen Village Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1810-1818. [26] 王利. 地质灾害高精度GPS监测关键技术研究[D]. 西安:长安大学, 2014. WANG Li. A Study on Key Technology of High Precision GPS Monitoring for Geological Hazard[D]. Xi'an:Chang'an University, 2014. [27] 张勤, 黄观文, 王利, 等. GPS在西安市地面沉降与地裂缝监测中的应用研究[J]. 工程地质学报, 2007, 15(6):828-833. ZHANG Qin, HUANG Guanwen, WANG Li, et al. GPS Monitoring and Surveying on Land Subsidence and Land Fissure in Xi'an City[J]. Journal of Engineering Geology, 2007, 15(6):828-833. [28] 吴北平, 李征航, 徐绍铨. GPS定位技术在三峡库区崩滑地质灾害监测中的试验分析[J]. 地球科学——中国地质大学学报, 2001, 26(6):648-652. WU Beiping, LI Zhenghang, XU Shaoquan. Application of GPS Satellite Positioning Technique to Monitoring of Landslides in Three Gorges Dam[J]. Earth Science:Journal of China University of Geosciences, 2001, 26(6):648-652. [29] 张勤, 黄观文, 丁晓光, 等. 顾及板块运动、稳定性和系统偏差的高精度GPS监测基准研究与实现[J]. 地球物理学报, 2009, 52(12):3158-3165. ZHANG Qin, HUANG Guanwen, DING Xiaoguang, et al. Research and Realization of High-Precision GPS Datum, Considering Plate Movement, Stability and System Errors[J]. Chinese Journal of Geophysics, 2009, 52(12):3158-3165. [30] ROERING J J, STIMELY L L, MACKEY B H, et al. Using DInSAR, Airborne LiDAR, and Archival Air Photos to Quantify Landsliding and Sediment Transport[J]. Geophysical Research Letters, 2009, 36(19):L19402. [31] CHEN Roufei, CHANG K J, ANGELIER J, et al. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data:the 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake[J]. Engineering Geology, 2006, 88(3-4):160-172. [32] MEISINA C, ZUCCA F, FOSSATI D, et al. Ground Deformation Monitoring by Using the Permanent Scatterers Technique:the Example of the Oltrepo Pavese (Lombardia, Italy)[J]. Engineering Geology, 2006, 88(3-4):240-259. [33] FARINA P, COLOMBO D, FUMAGALLI A, et al. Permanent Scatterers for Landslide Investigations:Outcomes from the ESA-SLAM Project[J]. Engineering Geology, 2006, 88(3-4):200-217. [34] 张勤, 赵超英, 王利. 重庆武隆-南川地区地质灾害InSAR监测报告[R]. 西安:长安大学, 2014. ZHANG Qin, ZHAO Chaoying, WANG Li. Report on InSAR Monitoring of Geological Hazards in Wulong-Nanchuan Area[R]. Xi'an:Chang'an University, 2014. [35] CASAGLI N, CIGNA F, BIANCHINI S, et al. Landslide Mapping and Monitoring by Using Radar and Optical Remote Sensing:Examples from the EC-FP7 Project SAFER[J]. Remote Sensing Applications:Society and Environment, 2016(4):92-108. [36] CIAMPALINI A, RASPINI F, FRODELLA W, et al. The Effectiveness of High-Resolution LiDAR Data Combined with PSInSAR Data in Landslide Study[J]. Landslides, 2016, 13(2):399-410. |
| [1] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [2] | Yangyi CHEN, Kai ZHENG, Xiaohong ZHANG, Mingkui WU, Pengxu WANG, Wenju FU, Kezhong LIU. GPS/Galileo/BDS overlapping frequencies multipath error analysis and modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1427-1438. |
| [3] | Jianzhang LI, Haowen YAN, Weifang YANG, Xiaoning SU. GNSS pseudo trigonometric leveling method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1170-1177. |
| [4] | Peng LI, Jianbo BAI, Zhenhong LI, Houjie WANG. Wide area coastal subsidence monitoring and driver analysis with multi tracks of TS-InSAR—a case study of Shandong province [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1178-1191. |
| [5] | Qingzhi ZHAO, Lulu CHANG, Yibin YAO, Haojie LI. A method for constructing a hydrological drought index integrated with GNSS and meteorological data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1192-1205. |
| [6] | Qianxin WANG, Chao HU, Tong CHENG. A method for satellite ultra-rapid orbit and clock offset estimation based on the prior information of the GNSS clock parameters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 982-994. |
| [7] | Yang SHEN, Guangyun LI, Mingjian CHEN, Linyang LI, Xingyu SHI, Wei CAI, Weifeng HAO. Assessment of GNSS ionosphere models based on FY-3 TEC in polar regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 995-1008. |
| [8] | Kefu WU, Haiqiang FU, Jianjun ZHU, Qijin HAN, Aichun WANG, Mingxia ZHANG, Zhiwei LI. LT-1 InSAR block adjustment considering the impact of penetration depth in forest areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1009-1020. |
| [9] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [10] | Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735. |
| [11] | Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421. |
| [12] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [13] | Zhaofeng DU, Guopeng LI, Zhanke LIU, Xiaming SHANG, Shengjun KANG, Xiaoqiang WANG. Comprehensive analysis of multiple monitoring methods in main subsidence areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 481-492. |
| [14] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| [15] | Jixing ZHU, Shuqiang XUE, Baojin LI, Zhen XIAO, Kaiming WANG. GNSS-acoustic inversion of double-exponential temperature profile [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 286-296. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||