[1] LOWE D G. Object Recognition from Local Scale-invariant Features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. [2] BAY H, ESS A, TUYTELAARS T, et al, Speeded-up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [3] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:An Efficient Alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. [4] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK:Binary Robust Invariant Scalable Keypoints[C]//IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. [5] CRANDALL D, OWENS A, SNAVELY N, et al. Discrete-continuous Optimization for Large-scale Structure from Motion[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2011. [6] WU Changchang. SiftGPU:A GPU Implementation of Scale Invariant Feature Transform (SIFT).(2007). URL http://cs.unc.edu/~ccwu/siftgpu. [7] SNAVELY N, SEITZ S M, SZELISKI R. Modeling the World from Internet Photo Collections[J]. International Journal of Computer Vision, 2008, 80(2):189-210. [8] Wu Changchang. VisualSFM:A Visual Structure from Motion System[EB/OL].[2017-12-12]. http://www.cs.washington.edu/homes/ccwu/vsfm. [9] FUHRMANN S, LANGGUTH F, MOEHRLE N, et al. MVE:An Image-based Reconstruction Environment[J]. Computers & Graphics, 2015, 53:44-53. [10] LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6):84-90. [12] BENGIO Y. Deep Learning of Representations for Unsupervised and Transfer Learning[C]//Proceedings of 2011 International Conference on Unsupervised and Transfer Learning workshop. Washington, USA:JMLR, 2012. [13] AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a Day[J]. Communications of the ACM, 2011, 54(10):105-112. [14] HAVLENA M, SCHINDLER K. VocMatch:Efficient Multiview Correspondence for Structure from Motion[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014. Cham:Springer, 2014. [15] ZHAN Zongqian, WANG Xin, WEI Minglu. Fast Method of Constructing Image Correlations to Build a Free Network Based on Image Multivocabulary Trees[J]. Journal of Electronic Imaging, 2015, 24(3):033029. [16] SCHÖNBERGER J L, FRAHM J M. Structure-from-Motion Revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016. [17] SCHÖNBERGER J L, PRICE T, SATTLER T, et al. A Vote-and-verify Strategy for Fast Spatial Verification in Image Retrieval[M]//LAI S H, LEPETIT V, NISHINO K, et al. Computer Vision-ACCV 2016. Cham:Springer, 2016. [18] ANGELI A, FILLIAT D, DONCIEUX S, et al. Fast and Incremental Method for Loop-closure Detection Using Bags of Visual Words[J]. IEEE Transactions on Robotics, 2008, 24(5):1027-1037. [19] CUMMINS M,NEWMAN P. Appearance-only SLAM at Large Scale with FAB-MAP 2.0[J]. The International Journal of Robotics Research, 2011, 30(9):1100-1123. [20] GALVEZ-LÓPE, D, TARDOS J D. Bags of Binary Words for Fast Place Recognition in Image Sequences[J]. IEEE Transactions on Robotics, 2012, 28(5):1188-1197. [21] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2:An Open-source SLAM System for Monocular, Stereo, and RGB-D Cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [22] GAO Xiang, ZHANG Tao. Unsupervised Learning to Detect Loops Using Deep Neural Networks for Visual Slam System[J]. Autonomous Robots, 2017, 41(1):1-18. [23] ZHANG Xiwu, SU Yan, ZHU Xinhua. Loop Closure Detection for Visual SLAM Systems Using Convolutional Neural Network[C]//The 23rd International Conference on Automation and Computing. Huddersfield, UK:IEEE, 2017. [24] BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural Codes for Image Retrieval[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014. Cham:Springer, 2014. [25] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN Features Off-the-shelf:An Astounding Baseline for Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH:IEEE, 2014. [26] YANDE A B, LEMPITSKY V. Aggregating Local Deep Features for Image Retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015. [27] DESEILLIGNY M P, CLÉRY I. Apero, An Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images[C]//Proceedings of the ISPRS Symposium.[S.l.]:ISPRS, 2011:269-276. |