Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (12): 1507-1522.doi: 10.11947/j.AGCS.2019.20190446
• Review • Previous Articles Next Articles
CHEN Ruizhi, WANG Lei, LI Deren, CHEN Liang, FU Wenju
Received:
2019-10-30
Revised:
2019-11-06
Published:
2019-12-24
Supported by:
CLC Number:
CHEN Ruizhi, WANG Lei, LI Deren, CHEN Liang, FU Wenju. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522.
[1] 李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建[J]. 武汉大学学报(信息科学版), 2015, 40(6):711-715, 766. LI Deren, SHEN Xin, GONG Jianya, et al. On construction of China's space information network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):711-715, 766. [2] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11):1501-1505. LI Deren, SHEN Xin, LI Dilong, et al. On civil-military integrated space-based real-time information service system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1501-1505. [3] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [4] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [5] 范本尧, 李祖洪, 刘天雄. 北斗卫星导航系统在汶川地震中的应用及建议[J]. 航天器工程, 2008, 17(4):6-13. FAN Benyao, LI Zuhong, LIU Tianxiong. Application and development proposition of BeiDou satellite navigation system in the rescue of Wenchuan earthquake[J]. Spacecraft Engineering, 2008, 17(4):6-13. [6] HAO Ming, ZHANG Jianlong, NIU Ruiqing, et al. Application of BeiDou navigation satellite system in emergency rescue of natural hazards:a case study for field geological survey of Qinghai-Tibet plateau[J]. Geo-spatial Information Science, 2018, 21(4):294-301. [7] 王任享, 王建荣, 李晶, 等. 天绘一号03星无控定位精度改进策略[J]. 测绘学报, 2019, 48(6):671-675. DOI:10.11947/j.AGCS.2019.20190058. WANG Renxiang, WANG Jianrong, LI Jing, et al. Improvement strategy for location accuracy without ground control points of 3rd satellite of TH-1[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):671-675. DOI:10.11947/j.AGCS.2019.20190058. [8] 李德仁, 郭晟, 胡庆武. 基于3S集成技术的LD2000系列移动道路测量系统及其应用[J]. 测绘学报, 2008, 37(3):272-276. DOI:10.3321/j.issn:1001-1595.2008.03.002. LI Deren, GUO Sheng, HU Qingwu. 3S(RS, GPS, GIS) integration technology based LD2000 series mobile mapping system and its applications[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):272-276. DOI:10.3321/j.issn:1001-1595.2008.03.002. [9] 李朋德. 中国应急测绘体系建设与实践[J]. 卫星与网络, 2013(11):22-27. LI Pengde. Construction and practice of emergency surveying and mapping system in China[J]. Satellites and Network, 2013(11):22-27. [10] 焦明连. GPS与InSAR数据融合方法及其应用[J]. 全球定位系统, 2010, 35(3):1-4. JIAO Minglian. GPS-InSAR data integration method and its application[J]. GNSS World of China, 2010, 35(3):1-4. [11] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [12] 谌华, 甘卫军. 利用GPS与InSAR融合提高形变监测精度方法研究[J]. 大地测量与地球动力学, 2010, 30(3):59-62. CHEN Hua, GAN Weijun. Study on improving deformation monitoring accuracy by using integrated GPS and InSAR[J]. Journal of Geodesy and Geodynamics, 2010, 30(3):59-62. [13] 李爱国, 张诗玉. 基于GPS的InSAR干涉图大气效应校正方法研究[J]. 测绘科学, 2011, 36(2):124-126. LI Aiguo, ZHANG Shiyu. Reduction of atmospheric effects on InSAR interferograms based on GPS[J]. Science of Surveying and Mapping, 2011, 36(2):124-126. [14] 常亮. 基于GPS和美国环境预报中心观测信息的InSAR大气延迟改正方法研究[J]. 测绘学报, 2011, 40(5):669-670. CHANG Liang. InSAR atmospheric delay correction based on GPS observations and NCEP data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):669-670. [15] 剧成宇, 师艳, 孙建勇, 等. 基于GPS的InSAR大气延迟校正方法研究[J]. 大地测量与地球动力学, 2012, 32(1):141-144. JU Chengyu, SHI Yan, SUN Jianyong, et al. Study on method based on GPS for correcting InSAR atmospheric delay[J]. Journal of Geodesy and Geodynamics, 2012, 32(1):141-144. [16] 罗海滨, 何秀凤. GPS控制点辅助InSAR相位解缠算法研究[J]. 武汉大学学报(信息科学版), 2017, 42(5):630-636. LUO Haibin, HE Xiufeng. InSAR phase unwrapping algorithms with the aid of GPS control points[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):630-636. [17] 张勤, 赵超英, 丁晓利, 等. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 2009, 52(5):1214-1222. ZHANG Qin, ZHAO Chaoying, DING Xiaoli, et al. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 2009, 52(5):1214-1222. [18] 宋小刚, 申星, 姜宇, 等. 通过InSAR与GPS数据融合获取汶川地震同震三维形变场[J]. 地震地质, 2015, 37(1):222-231. SONG Xiaogang, SHEN Xing, JIANG Yu, et al. Coseismic 3D deformation field acquisition of the Wenchuan earthquake based on InSAR and GPS data[J]. Seismology and Geology, 2015, 37(1):222-231. [19] 许才军, 何平, 温扬茂, 等. 日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J]. 武汉大学学报(信息科学版), 2012, 37(12):1387-1391. XU Caijun, HE Ping, WEN Yangmao, et al. Coseismic deformation and slip distribution for 2011 Tohoku-Oki Mw 9.0 earthquake:constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1387-1391. [20] 班保松, 伍吉仓, 陈永奇, 等. 联合GPS和InSAR观测结果计算汶川地震三维地表形变[J]. 大地测量与地球动力学, 2010, 30(4):25-28, 35. BAN Baosong, WU Jicang, CHEN Yongqi, et al. Calculation of three-dimensional terrain deformation of Wenchuan earthquake with GPS AND InSAR data[J]. Journal of Geodesy and Geodynamics, 2010, 30(4):25-28, 35. [21] 屠泓为, 汪荣江, 刁法启, 等. 运用SDM方法研究2001年昆仑山口西Ms8.1地震破裂分布:GPS和InSAR联合反演的结果[J]. 地球物理学报, 2016, 59(6):2103-2112. TU Hongwei, WANG Rongjiang, DIAO Faqi, et al. Slip model of the 2001 Kunlun mountain Ms8.1 earthquake by SDM:joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 2016, 59(6):2103-2112. [22] 胡俊, 李志伟, 朱建军, 等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报, 2013, 56(1):117-126. HU Jun, LI Zhiwei, ZHU Jianjun, et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics, 2013, 56(1):117-126. [23] 曹海坤, 赵丽华, 张勤, 等. 利用附加系统误差参数的升降轨InSAR-GPS数据融合方法建立三维形变场[J]. 武汉大学学报(信息科学版), 2018, 43(9):1362-1368. CAO Haikun, ZHAO Lihua, ZHANG Qin, et al. Ascending and descending orbits InSAR-GPS data fusion method with additional systematic parameters for three-dimensional deformation field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9):1362-1368. [24] 谢勇. InSAR/GPS在矿山开采沉陷变形监测中的应用研究[J]. 矿山测量, 2012(1):81-83. XIE Yong. Application of InSAR-GPS in deformation monitoring of mining subsidence[J]. Mine Surveying, 2012(1):81-83. [25] 熊寻安, 龚春龙, 王明洲. 基于北斗/GNSS与InSAR的水库群坝体表面变形监测体系[J]. 水利信息化, 2019(3):45-49, 61. XIONG Xunan, GONG Chunlong, WANG Mingzhou. Surface deformation monitoring of reservoir group dams system with BDS/GNSS and InSAR technology[J]. Water Resources Informatization, 2019(3):45-49, 61. [26] 王毅鹏, 张永志, 赵超英, 等. GPS及InSAR数据支持下的甘肃黑方台滑坡监测云平台设计与分析[J]. 测绘通报, 2019(8):106-110. DOI:10.13474/j.cnki.11-2246.2019.0262. WANG Yipeng, ZHANG Yongzhi, ZHAO Chaoying, et al. Design and analysis of cloud platform for landslide monitoring in Heifangtai, Gansu province based on GPS and InSAR data[J]. Bulletin of Surveying and Mapping, 2019(8):106-110. DOI:10.13474/j.cnki.11-2246.2019.0262. [27] 王任享, 王建荣. 无地面控制点卫星摄影测量探讨[J]. 测绘科学, 2015, 40(2):3-12. WANG Renxiang, WANG Jianrong. Discussion on satellite photogrammetry without ground control point[J]. Science of Surveying and Mapping, 2015, 40(2):3-12. [28] 王任享, 王建荣, 胡莘. 光学卫星摄影无控定位精度分析[J]. 测绘学报, 2017, 46(3):332-337. DOI:10.11947/j.AGCS.2017.20160650. WANG Renxiang, WANG Jianrong, HU Xin. Analysis of location accuracy without ground control points of optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):332-337. DOI:10.11947/j.AGCS.2017.20160650. [29] 孙钰珊, 张力, 许彪, 等. 资源三号卫星影像无控制区域网平差[J]. 遥感学报, 2019, 23(2):205-214. SUN Yushan, ZHANG Li, XU Biao, et al. Method and GCP-independent block adjustment for ZY-3 satellite images[J]. Journal of Remote Sensing, 2019, 23(2):205-214. [30] 王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12):2191-2196. WANG Lei, CHEN Ruizhi, LI Deren, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2191-2196. [31] WANG Lei, CHEN Ruizhi, LI Deren, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A Satellite[J]. Sensors, 2018, 18(11):3919. [32] WANG Lei, CHEN Ruizhi, XU Beizhen, et al. The challenges of LEO based navigation augmentation system-lessons learned from Luojia-1A Satellite[C]//Proceedings of 2019 China Satellite Navigation Conference Singapore:Springer, 2019:298-310. [33] FORLANI G, DALL'ASTA E, DIOTRI F, et al. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning[J]. Remote Sensing, 2018, 10(2):311. [34] CHEN Ruizhi, CHU Tianxing, LANDIVAR J A, et al. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images[J]. Precision Agriculture, 2018, 19(1):161-177. [35] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-513, 540. LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513, 540. [36] 张春森, 朱师欢, 臧玉府, 等. 顾及曝光延迟的无人机GPS辅助光束法平差方法[J]. 测绘学报, 2017, 46(5):565-572. DOI:10.11947/j.AGCS.2017.20160583. ZHANG Chunsen, ZHU Shihuan, ZANG Yufu, et al. GPS-supported bundle adjustment method of UAV by considering exposure delay[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):565-572. DOI:10.11947/j.AGCS.2017.20160583. [37] 杨峻巍. 基于临近空间飞行器的区域导航系统关键技术分析[J]. 电讯技术, 2014, 54(4):385-391. YANG Junwei. Analysis of key techniques of regional navigation system based on near space vehicle[J]. Telecommunication Engineering, 2014, 54(4):385-391. [38] 阎啸, 唐博, 张天虹, 等. 临近空间飞行器信息系统一体化载荷平台[J]. 航空学报, 2016, 37(S1):S127-S133. YAN Xiao, TANG Bo, ZHANG Tianhong, et al. Payload platform of near space vehicle information system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S127-S133. [39] 莫中秋, 陈威屹, 邓平科. 临近空间浮空器的组网与导航定位方法[J]. 计算机应用, 2018, 38(S2):226-230. MO Zhongqiu, CHEN Weiyi, DENG Pingke. Networking and navigation method based on near space aerostat[J]. Journal of Computer Applications, 2018, 38(S2):226-230. [40] 李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来[J]. 机器人, 2002, 24(5):475-480. LI Lei, YE Tao, TAN Min, et al. Present state and future development of mobile robot technology research[J]. Robot, 2002, 24(5):475-480. [41] 陆玉祥, 万晓莉, 常岑, 等. 车载移动测量系统在大比例尺地形图数学精度检测中的应用[J]. 测绘通报, 2019(6):109-111, 125. DOI:10.13474/j.cnki.11-2246.2019.0196. LU Yuxiang, WAN Xiaoli, CHANG Cen, et al. Application of vehicle-borne mobile surveying system in the mathematical precision detection of large scale topographic map[J]. Bulletin of Surveying and Mapping, 2019(6):109-111, 125. DOI:10.13474/j.cnki.11-2246.2019.0196. [42] 李德仁, 胡庆武, 郭晟, 等. 移动道路测量系统及其在科技奥运中的应用[J]. 科学通报, 2009, 54(3):312-320. LI Deren, HU Qingwu, GUO Sheng, et al. Mobile road surveying system and its application in science olympic game[J]. Chinese Science Bulletin, 2009, 54(3):312-320. [43] 胡文雄. 车载移动测量技术在道路测量中的应用[J]. 工程勘察, 2019, 47(7):62-65. HU Wenxiong. Application of vehicle-mounted mobile measurement technology in road measurement[J]. Geotechnical Investigation & Surveying, 2019, 47(7):62-65. [44] 李德仁. 移动测量技术及其应用[J]. 地理空间信息, 2006, 4(4):1-5. LI Deren. Mobile mapping technology and its applications[J]. Geospatial Information, 2006, 4(4):1-5. [45] 梁明杰, 闵华清, 罗荣华. 基于图优化的同时定位与地图创建综述[J]. 机器人, 2013, 35(4):500-512. LIANG Mingjie, MIN Huaqing, LUO Ronghua. Graph-based SLAM:a survey[J]. Robot, 2013, 35(4):500-512. [46] CHIELLA A C B, MACHADO H N, TEIXEIRA B O S, et al. GNSS/LiDAR-based navigation of an aerial robot in sparse forests[J]. Sensors, 2019, 19(19):4061. [47] 曾庆喜, 邱文旗, 冯玉朋, 等. GNSS/VO组合导航研究现状及发展趋势[J]. 导航定位学报, 2018, 6(2):1-6. ZENG Qingxi, QIU Wenqi, FENG Yupeng, et al. Status and development trend analysis of GNSS/VO integrated navigation system[J]. Journal of Navigation and Positioning, 2018, 6(2):1-6. [48] 邵永社, 陈鹰, 祝小平. 利用影像匹配和摄影测量实现无人机精确导航[J]. 测控技术, 2006, 25(8):79-82. SHAO Yongshe, CHEN Ying, ZHU Xiaoping. Navigating the UAV/RPV accurately using image matching technique and photogrammetric theory[J]. Measurement & Control Technology, 2006, 25(8):79-82. [49] 张奕然, 郭承军, 牛瑞朝. 智能车双目视觉辅助GNSS定位方法研究[J]. 计算机工程与应用, 2016, 52(17):192-197. ZHANG Yiran, GUO Chengjun, NIU Ruizhao. Research on stereo-vision aided GNSS localization for intelligent vehicles[J]. Computer Engineering and Applications, 2016, 52(17):192-197. [50] LANGE S, NIKO, S, PROTZEL P. Autonomous landing for a multirotor UAV using vision[C]//Proceedings of Simpar Intl Conf on Simulation, Modeling & Programming for Autonomous Robots. Vinice, Italy:SMPAR,2008:482-491. [51] 江春红, 苏惠敏, 陈哲. 信息融合技术在INS/GPS/TAN/SMN四组合系统中的应用[J]. 信息与控制, 2001, 30(6):537-542. JIANG Chunhong, SU Huimin, CHEN Zhe. Multi-sensor information fusion technique and it's application in INS/GPS/TAN/SMN integrated navigation systems[J]. Information and Control, 2001, 30(6):537-542. [52] 袁冬莉, 闫建国, 王新民, 等. 无人机组合导航系统信息融合方法研究[J]. 西北工业大学学报, 2006, 24(5):558-561. YUAN Dongli, YAN Jianguo, WANG Xinmin, et al. A DR/RP/GNSS/DNS/TAN/SMN integrated navigation system for UAV based on federated Kalman filtering[J]. Journal of Northwestern Polytechnical University, 2006, 24(5):558-561. [53] 冯黎, 郭承军. 基于GNSS/SINS/双目视觉里程计的车载导航系统分析与设计[J]. 汽车技术, 2019(10):37-41. FENG Li, GUO Chengjun. Analysis and design of car navigation system based on GNSS/SINS/Binocular vision odometer[J]. Automobile Technology, 2019(10):37-41. [54] 傅博, 焦艳梅, 丁夏清, 等. 一种鲁棒的多目视觉惯性即时定位与建图方法[J]. 载人航天, 2019, 25(5):21-25. FU Bo, JIAO Yanmei, DING Xiaqing, et al. A robust multi-camera visual-inertial simultaneous localization and mapping method[J]. Manned Spaceflight, 2019, 25(5):21-25. [55] 郭延宁, 冯振, 马广富, 等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报, 2018, 39(11):1185-1196. GUO Yanning, FENG Zhen, MA Guangfu, et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics, 2018, 39(11):1185-1196. [56] LI Tuan, ZHANG Hongping, GAO Zhouzheng, et al. Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments[J]. Remote Sensing, 2019, 11(6):610. [57] WANG Jinling, GARRATT M, LAMBERT A, et al. Integration of GPS/INS/Vision sensors to navigate unmanned aerial vehicles[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing:[s.n.], 2011. [58] ABABSA F. Advanced 3D localization by fusing measurements from GPS, inertial and vision sensors[C]//Proceedings of 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio, TX, USA:IEEE, 2009. [59] GAKNE P V, O'KEEFE K. Tightly-coupled GNSS/Vision using a sky-pointing camera for vehicle navigation in urban areas[J]. Sensors, 2018, 18(4):1244. [60] 王磊, 陈锐志, 付文举, 等. 一种视觉影像和GNSS测距信号紧耦合定位系统与方法:中国, 201910802812.0[P].[2019-10-28]. WANG Lei, CHEN Ruizhi, FU Wenju, et al. a tightly coupled positioningsystem and approach based on visual images and GNSS ranging signals:CN, 201910802812.0[P].[2019-10-28]. [61] SCHVLER T. On ground-based GPS tropospheric delay estimation[D]. Munich, Germany:Studiengang Geodäsie Und Geoinformation der Universität der Bundeswehr München, 2001. [62] 李国平. 地基GPS水汽监测技术及气象业务化应用系统的研究[J]. 大气科学学报, 2011, 34(4):385-392. LI Guoping. Research of remote sensing technology of atmospheric water vapor by using ground-based GPS and application system of meteorological operation[J]. Transactions of Atmospheric Sciences, 2011, 34(4):385-392. [63] 陈笑娟, 扈成省, 王占伟. 国内外GPS气象学的若干研究应用进展[J]. 测绘科学, 2010, 35(3):216-218. CHEN Xiaojuan, HU Chengsheng, WANG Zhanwei. Research and application progress of national and international GPS meteorology[J]. Science of Surveying and Mapping, 2010, 35(3):216-218. [64] YANG Fei, GUO Jiming, SHI Junbo, et al. A GPS water vapor tomography method based on a genetic algorithm[J]. Atmospheric Measurement Techniques, 2019(1):1-25. [65] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院研究生院, 2004. SONG Shuli. Sensing three dimensional water vapor structure with ground-based GPS network and the application in meteorology[D]. Shanghai:Graduate School of Chinese Academy of Science, 2004. [66] 张豹. 地基GNSS水汽反演技术及其在复杂天气条件下的应用研究[D]. 武汉:武汉大学, 2016. ZHANG Bao. The study of water vapor inversion using ground-based GNSS and its applications in severe weather conditions[D]. Wuhan:Wuhan University, 2016. [67] 江鹏. 地基GNSS探测2D/3D大气水汽分布技术研究[D]. 武汉:武汉大学, 2014. JIANG Peng. The study of retrieving 2D/3D water vapor distribution using ground-based GNSS meteorology[D]. Wuhan:Wuhan University, 2014. [68] 严豪健, 符养, 洪振杰, 等. 天基GPS气象学与反演技术[M]. 北京:中国科学技术出版社, 2006. YAN Haojian, FU Yang, HONG Zhenjie, et al. Space based GNSS meteorology and inversion technology[M]. Beijing:China Science and Technology Press, 2006. [69] 胡雄, 曾桢, 张训械, 等. 大气GPS掩星观测反演方法[J]. 地球物理学报, 2005, 48(4):768-774. HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Atmospheric inversion methods of GPS radio occultation[J]. Chinese Journal of Geophysics, 2005, 48(4):768-774. [70] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [71] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [72] 胡雄, 曾桢, 张训械, 等. 无线电掩星技术及其应用[J]. 电波科学学报, 2002, 17(5):549-556. HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Radio occultation and its application[J]. Chinese Journal of Radio Science, 2002, 17(5):549-556. [73] 李国平, 黄丁发. GPS气象学研究及应用的进展与前景[J]. 气象科学, 2005, 25(6):651-661. LI Guoping, HUANG Dingfa. Advances and prospects in the study of GPS meteorology[J]. Scientia Meteorologica Sinica, 2005, 25(6):651-661. [74] SUN Yueqiang, BAI Weihua, LIU Congliang, et al. The FengYun-3C radio occultation sounder GNOS:a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10):5797-5811. [75] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10):1364-1378. YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1364-1378. [76] 张宝成, 欧吉坤, 李子申, 等. 利用精密单点定位求解电离层延迟[J]. 地球物理学报, 2011, 54(4):950-957. ZHANG Baocheng, OU Jikun, LI Zishen, et al. Determination of ionospheric observables with precise point positioning[J]. Chinese Journal of Geophysics, 2011, 54(4):950-957. [77] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[D]. 武汉:中国科学院大学, 2012. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[D]. Wuhan:University of Chinese Academy of Science, 2012. [78] 李子申. GNSS/Compass电离层时延修正及TEC监测理论与方法研究[D]. 武汉:中国科学院大学, 2012. LI Zishen. Study on the mitigation of ionosphere delay and the monitoring of global ionospheric TEC based on GNSS/Compass[D]. Wuhan:University of Chinese Academy of Science, 2012. [79] 徐继生, 邹玉华, 马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析[J]. 地球物理学报, 2005, 48(4):759-767. XU Jisheng, ZOU Yuhua, MA Shuying. Time-dependent 3-D computerized ionospheric tomography with ground-based GPS network and occultation observations[J]. Chinese Journal of Geophysics, 2005, 48(4):759-767. [80] 吴小成, 胡雄, 张训械, 等. 电离层GPS掩星观测改正TEC反演方法[J]. 地球物理学报, 2006, 49(2):328-334. WU Xiaocheng, HU Xiong, ZHANG Xunxie, et al. A calibrated TEC method for inversion of ionospheric GPS occultation data[J]. Chinese Journal of Geophysics, 2006, 49(2):328-334. [81] 蒋廷臣, 王秀萍. 层析模型在GNSS探测电离层中的研究进展[J]. 测绘科学, 2009, 34(6):102-104, 130. JIANG Tingchen, WANG Xiuping. Research development of ionospheric tomography models based on GNSS[J]. Science of Surveying and Mapping, 2009, 34(6):102-104, 130. [82] 杨剑, 吴云, 周义炎. 基于电离层层析成像技术探测汶川地震前电离层异常[J]. 大地测量与地球动力学, 2011, 31(1):9-14. YANG Jian, WU Yun, ZHOU Yiyan. Probe into seismo-ionospheric anomaly of Wenchuan Ms8.0 earthquake based on computerized ionospheric tomography[J]. Journal of Geodesy and Geodynamics, 2011, 31(1):9-14. [83] 姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4):385-395. DOI:10.11947/j.AGCS.2016.20150384. YAO Yibin, ZHAI Changzhi, KONG Jian, et al. The pre-earthquake ionosphere anomaly of the 2015 Nepal earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):385-395. DOI:10.11947/j.AGCS.2016.20150384. [84] 唐龙, 郭博峰, 郑凯. 利用GPS网观测反射海啸波引发的电离层扰动[J]. 地球物理学报, 2017, 60(5):1643-1649. TANG Long, GUO Bofeng, ZHENG Kai. Observation of ionospheric disturbances induced by reflected tsunami waves using GPS network[J]. Chinese Journal of Geophysics, 2017, 60(5):1643-1649. [85] 唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2):507-513. TANG Long, GUO Bofeng, LI Zhe. Detection of ionospheric disturbances driven by the 2011 Tohoku tsunami using GPS network in Japan[J]. Chinese Journal of Geophysics, 2017, 60(2):507-513. [86] 万玮, 李黄, 洪阳, 等. GNSS-R遥感观测模式及陆面应用[J]. 遥感学报, 2015, 19(6):882-893. WAN Wei, LI Huang, HONG Yang, et al. Definition and application of GNSS-R observation patterns[J]. Journal of Remote Sensing, 2015, 19(6):882-893. [87] 李云伟. 基于GNSS-R的积雪厚度测量理论与方法研究[D]. 武汉:武汉大学, 2019. LI Yunwei. Theories and methods of GNSS-R based snow depth estimation[D]. Wuhan:Wuhan University, 2019. [88] 王帅. GNSS-R海面测高技术的国内外研究及未来展望[J]. 科技资讯, 2018, 16(16):49-51. WANG Shuai. Research status and future of GNSS-R sea height retrival technology[J]. Science & Technology Information, 2018, 16(16):49-51. [89] 王艺燃, 洪学宝, 张波, 等. 基于DDMR辅助的GNSS-R载波相位差测高方法[J]. 北京航空航天大学学报, 2014, 40(2):257-261. WANG Yiran, HONG Xuebao, ZHANG Bo, et al. Carrier phase difference estimation method based on DDMR-assistance for GNSS-R altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):257-261. [90] 邵连军, 张训械, 王鑫, 等. 利用GNSS-R信号反演海浪波高[J]. 武汉大学学报(信息科学版), 2008, 33(5):475-478. SHAO Lianjun, ZHANG Xunxie, WANG Xin, et al. Sea surface wave height retrieve using GNSS-R signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):475-478. [91] 刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11):955-960. LIU Jingnan, SHAO Lianjun, ZHANG Xunxie. Advances in GNSS-R studies and key technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):955-960. [92] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11):2735-2744. YAN Songhua, GONG Jianya, ZHANG Xunxie, et al. Ground based GNSS-R observations for soil moisture[J]. Chinese Journal of Geophysics, 2011, 54(11):2735-2744. [93] 杨磊. GNSS-R农田土壤湿度反演方法研究[J]. 测绘学报, 2018, 47(1):134. DOI:10.11947/j.AGCS.2017.20170356. YANG Lei. Study of GNSS-R cropland soil moisture retrieval method[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):134. DOI:10.11947/j.AGCS.2017.20170356. [94] 张云, 郭建京, 袁国良, 等. 基于GNSS反射信号的海冰检测的研究[J]. 全球定位系统, 2013, 38(2):1-6. ZHANG Yun, GUO Jianjing, YUAN Guoliang, et al. Sea ice study based on GNSS-R signal[J]. GNSS Word of China, 2013, 38(2):1-6. [95] 吕帆, 修春娣, 王峰, 等. GNSS-R海面风场反演模型仿真分析[J]. 导航定位学报, 2018, 6(3):87-91, 97. LÜ Fan, XIU Chundi, WANG Feng, et al. Simulation analysis on GNSS-R ocean surface wind field retrieval model[J]. Journal of Navigation and Positioning, 2018, 6(3):87-91, 97. [96] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2), 951-964. [97] 张训械, 邵连军, 王鑫, 等. GNSS-R地基实验[J]. 全球定位系统, 2006, 31(5):4-8, 12. ZHANG Xunxie, SHAO Lianjun, WANG Xin, et al. GNSS-R ground based experimental campaign[J]. GNSS World of China, 2006, 31(5):4-8, 12. [98] 王博, 朱云龙, 高超群, 等. GNSS-R双基SAR运动目标成像技术探讨[J]. 导航定位学报, 2019, 7(1):59-64. WANG Bo, ZHU Yunlong, GAO Chaoqun, et al. Discussion on imaging technology of GNSS-R bistatic SAR moving target[J]. Journal of Navigation and Positioning, 2019, 7(1):59-64. [99] 田卫明, 曾涛, 胡程. 基于导航信号的BiSAR成像技术[J]. 雷达学报, 2013, 2(1):39-45. TIAN Weiming, ZENG Tao, HU Cheng. Imaging algorithm for bistatic SAR based on GNSS signal[J]. Journal of Radars, 2013, 2(1):39-45. [100] MA Hui, ANTONIOU M, CHERNIAKOV M. Passive GNSS-based SAR imaging and opportunities using Galileo E5 signals[J]. Science China Information Sciences, 2015, 58(6):1-11. [101] 杨磊, 朱云龙, 杨东凯. GNSS-R信号的海面SAR成像应用[J]. 导航定位学报, 2017, 5(3):94-100. YANG Lei, ZHU Yunlong, YANG Dongkai. Application of GNSS-R signals in sea surface SAR imaging[J]. Journal of Navigation and Positioning, 2017, 5(3):94-100. [102] 张国栋, 郭健, 杨东凯, 等. 星载GNSS-R海冰边界探测方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):668-674. ZHANG Guodong, GUO Jian, YANG Dongkai, et al. Sea ice edge detection using spaceborne GNSS-R signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):668-674. [103] LI Yonghong, RIZOS C, DONSKOI E, et al. 3D multi-static SAR system for terrain imaging based on indirect GPS signals[J]. Journal of Global Positioning Systems, 2002, 1(1):34-39. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | TAN Shusen, ZHANG Tianqiao. Progress and evolution of contemporary GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1114-1118. |
[3] | WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141-1152. |
[4] | CHEN Ruizhi, QIAN Long, NIU Xiaoguang, XU Shihao, CHEN Liang, QIU Chao. Fusing acoustic ranges and inertial sensors using a data and model dual-driven approach [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1160-1171. |
[5] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[6] | ZHANG Xiaohong, ZHOU Yuhui, ZHU Feng, HU Haojie. A new vehicle motion constraint model with parameter autonomous learning and analysis on inertial drift error suppression [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1249-1258. |
[7] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[8] | WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371. |
[9] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[10] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[11] | PENG Rencan, DONG Jian, JIA Shuaidong, TANG Lulu, WANG Fang. Research progress and prospect of digital depth model constructing technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1575-1587. |
[12] | LIU Jiping, WANG Yong, HU Yanzhu, LUO An, CHE Xianghong, LI Pengpeng, CAO Yuanhui. A review of web-based ubiquitous geospatial information discovery and integration technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1618-1628. |
[13] | LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01 [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. |
[14] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[15] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||