Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (12): 1507-1522.doi: 10.11947/j.AGCS.2019.20190446
• Review • Previous Articles Next Articles
CHEN Ruizhi, WANG Lei, LI Deren, CHEN Liang, FU Wenju
Received:2019-10-30
Revised:2019-11-06
Published:2019-12-24
Supported by:CLC Number:
CHEN Ruizhi, WANG Lei, LI Deren, CHEN Liang, FU Wenju. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522.
| [1] 李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建[J]. 武汉大学学报(信息科学版), 2015, 40(6):711-715, 766. LI Deren, SHEN Xin, GONG Jianya, et al. On construction of China's space information network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):711-715, 766. [2] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11):1501-1505. LI Deren, SHEN Xin, LI Dilong, et al. On civil-military integrated space-based real-time information service system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1501-1505. [3] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [4] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [5] 范本尧, 李祖洪, 刘天雄. 北斗卫星导航系统在汶川地震中的应用及建议[J]. 航天器工程, 2008, 17(4):6-13. FAN Benyao, LI Zuhong, LIU Tianxiong. Application and development proposition of BeiDou satellite navigation system in the rescue of Wenchuan earthquake[J]. Spacecraft Engineering, 2008, 17(4):6-13. [6] HAO Ming, ZHANG Jianlong, NIU Ruiqing, et al. Application of BeiDou navigation satellite system in emergency rescue of natural hazards:a case study for field geological survey of Qinghai-Tibet plateau[J]. Geo-spatial Information Science, 2018, 21(4):294-301. [7] 王任享, 王建荣, 李晶, 等. 天绘一号03星无控定位精度改进策略[J]. 测绘学报, 2019, 48(6):671-675. DOI:10.11947/j.AGCS.2019.20190058. WANG Renxiang, WANG Jianrong, LI Jing, et al. Improvement strategy for location accuracy without ground control points of 3rd satellite of TH-1[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):671-675. DOI:10.11947/j.AGCS.2019.20190058. [8] 李德仁, 郭晟, 胡庆武. 基于3S集成技术的LD2000系列移动道路测量系统及其应用[J]. 测绘学报, 2008, 37(3):272-276. DOI:10.3321/j.issn:1001-1595.2008.03.002. LI Deren, GUO Sheng, HU Qingwu. 3S(RS, GPS, GIS) integration technology based LD2000 series mobile mapping system and its applications[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):272-276. DOI:10.3321/j.issn:1001-1595.2008.03.002. [9] 李朋德. 中国应急测绘体系建设与实践[J]. 卫星与网络, 2013(11):22-27. LI Pengde. Construction and practice of emergency surveying and mapping system in China[J]. Satellites and Network, 2013(11):22-27. [10] 焦明连. GPS与InSAR数据融合方法及其应用[J]. 全球定位系统, 2010, 35(3):1-4. JIAO Minglian. GPS-InSAR data integration method and its application[J]. GNSS World of China, 2010, 35(3):1-4. [11] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [12] 谌华, 甘卫军. 利用GPS与InSAR融合提高形变监测精度方法研究[J]. 大地测量与地球动力学, 2010, 30(3):59-62. CHEN Hua, GAN Weijun. Study on improving deformation monitoring accuracy by using integrated GPS and InSAR[J]. Journal of Geodesy and Geodynamics, 2010, 30(3):59-62. [13] 李爱国, 张诗玉. 基于GPS的InSAR干涉图大气效应校正方法研究[J]. 测绘科学, 2011, 36(2):124-126. LI Aiguo, ZHANG Shiyu. Reduction of atmospheric effects on InSAR interferograms based on GPS[J]. Science of Surveying and Mapping, 2011, 36(2):124-126. [14] 常亮. 基于GPS和美国环境预报中心观测信息的InSAR大气延迟改正方法研究[J]. 测绘学报, 2011, 40(5):669-670. CHANG Liang. InSAR atmospheric delay correction based on GPS observations and NCEP data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):669-670. [15] 剧成宇, 师艳, 孙建勇, 等. 基于GPS的InSAR大气延迟校正方法研究[J]. 大地测量与地球动力学, 2012, 32(1):141-144. JU Chengyu, SHI Yan, SUN Jianyong, et al. Study on method based on GPS for correcting InSAR atmospheric delay[J]. Journal of Geodesy and Geodynamics, 2012, 32(1):141-144. [16] 罗海滨, 何秀凤. GPS控制点辅助InSAR相位解缠算法研究[J]. 武汉大学学报(信息科学版), 2017, 42(5):630-636. LUO Haibin, HE Xiufeng. InSAR phase unwrapping algorithms with the aid of GPS control points[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):630-636. [17] 张勤, 赵超英, 丁晓利, 等. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 2009, 52(5):1214-1222. ZHANG Qin, ZHAO Chaoying, DING Xiaoli, et al. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 2009, 52(5):1214-1222. [18] 宋小刚, 申星, 姜宇, 等. 通过InSAR与GPS数据融合获取汶川地震同震三维形变场[J]. 地震地质, 2015, 37(1):222-231. SONG Xiaogang, SHEN Xing, JIANG Yu, et al. Coseismic 3D deformation field acquisition of the Wenchuan earthquake based on InSAR and GPS data[J]. Seismology and Geology, 2015, 37(1):222-231. [19] 许才军, 何平, 温扬茂, 等. 日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J]. 武汉大学学报(信息科学版), 2012, 37(12):1387-1391. XU Caijun, HE Ping, WEN Yangmao, et al. Coseismic deformation and slip distribution for 2011 Tohoku-Oki Mw 9.0 earthquake:constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1387-1391. [20] 班保松, 伍吉仓, 陈永奇, 等. 联合GPS和InSAR观测结果计算汶川地震三维地表形变[J]. 大地测量与地球动力学, 2010, 30(4):25-28, 35. BAN Baosong, WU Jicang, CHEN Yongqi, et al. Calculation of three-dimensional terrain deformation of Wenchuan earthquake with GPS AND InSAR data[J]. Journal of Geodesy and Geodynamics, 2010, 30(4):25-28, 35. [21] 屠泓为, 汪荣江, 刁法启, 等. 运用SDM方法研究2001年昆仑山口西Ms8.1地震破裂分布:GPS和InSAR联合反演的结果[J]. 地球物理学报, 2016, 59(6):2103-2112. TU Hongwei, WANG Rongjiang, DIAO Faqi, et al. Slip model of the 2001 Kunlun mountain Ms8.1 earthquake by SDM:joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 2016, 59(6):2103-2112. [22] 胡俊, 李志伟, 朱建军, 等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报, 2013, 56(1):117-126. HU Jun, LI Zhiwei, ZHU Jianjun, et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics, 2013, 56(1):117-126. [23] 曹海坤, 赵丽华, 张勤, 等. 利用附加系统误差参数的升降轨InSAR-GPS数据融合方法建立三维形变场[J]. 武汉大学学报(信息科学版), 2018, 43(9):1362-1368. CAO Haikun, ZHAO Lihua, ZHANG Qin, et al. Ascending and descending orbits InSAR-GPS data fusion method with additional systematic parameters for three-dimensional deformation field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9):1362-1368. [24] 谢勇. InSAR/GPS在矿山开采沉陷变形监测中的应用研究[J]. 矿山测量, 2012(1):81-83. XIE Yong. Application of InSAR-GPS in deformation monitoring of mining subsidence[J]. Mine Surveying, 2012(1):81-83. [25] 熊寻安, 龚春龙, 王明洲. 基于北斗/GNSS与InSAR的水库群坝体表面变形监测体系[J]. 水利信息化, 2019(3):45-49, 61. XIONG Xunan, GONG Chunlong, WANG Mingzhou. Surface deformation monitoring of reservoir group dams system with BDS/GNSS and InSAR technology[J]. Water Resources Informatization, 2019(3):45-49, 61. [26] 王毅鹏, 张永志, 赵超英, 等. GPS及InSAR数据支持下的甘肃黑方台滑坡监测云平台设计与分析[J]. 测绘通报, 2019(8):106-110. DOI:10.13474/j.cnki.11-2246.2019.0262. WANG Yipeng, ZHANG Yongzhi, ZHAO Chaoying, et al. Design and analysis of cloud platform for landslide monitoring in Heifangtai, Gansu province based on GPS and InSAR data[J]. Bulletin of Surveying and Mapping, 2019(8):106-110. DOI:10.13474/j.cnki.11-2246.2019.0262. [27] 王任享, 王建荣. 无地面控制点卫星摄影测量探讨[J]. 测绘科学, 2015, 40(2):3-12. WANG Renxiang, WANG Jianrong. Discussion on satellite photogrammetry without ground control point[J]. Science of Surveying and Mapping, 2015, 40(2):3-12. [28] 王任享, 王建荣, 胡莘. 光学卫星摄影无控定位精度分析[J]. 测绘学报, 2017, 46(3):332-337. DOI:10.11947/j.AGCS.2017.20160650. WANG Renxiang, WANG Jianrong, HU Xin. Analysis of location accuracy without ground control points of optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):332-337. DOI:10.11947/j.AGCS.2017.20160650. [29] 孙钰珊, 张力, 许彪, 等. 资源三号卫星影像无控制区域网平差[J]. 遥感学报, 2019, 23(2):205-214. SUN Yushan, ZHANG Li, XU Biao, et al. Method and GCP-independent block adjustment for ZY-3 satellite images[J]. Journal of Remote Sensing, 2019, 23(2):205-214. [30] 王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12):2191-2196. WANG Lei, CHEN Ruizhi, LI Deren, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2191-2196. [31] WANG Lei, CHEN Ruizhi, LI Deren, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A Satellite[J]. Sensors, 2018, 18(11):3919. [32] WANG Lei, CHEN Ruizhi, XU Beizhen, et al. The challenges of LEO based navigation augmentation system-lessons learned from Luojia-1A Satellite[C]//Proceedings of 2019 China Satellite Navigation Conference Singapore:Springer, 2019:298-310. [33] FORLANI G, DALL'ASTA E, DIOTRI F, et al. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning[J]. Remote Sensing, 2018, 10(2):311. [34] CHEN Ruizhi, CHU Tianxing, LANDIVAR J A, et al. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images[J]. Precision Agriculture, 2018, 19(1):161-177. [35] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-513, 540. LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513, 540. [36] 张春森, 朱师欢, 臧玉府, 等. 顾及曝光延迟的无人机GPS辅助光束法平差方法[J]. 测绘学报, 2017, 46(5):565-572. DOI:10.11947/j.AGCS.2017.20160583. ZHANG Chunsen, ZHU Shihuan, ZANG Yufu, et al. GPS-supported bundle adjustment method of UAV by considering exposure delay[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):565-572. DOI:10.11947/j.AGCS.2017.20160583. [37] 杨峻巍. 基于临近空间飞行器的区域导航系统关键技术分析[J]. 电讯技术, 2014, 54(4):385-391. YANG Junwei. Analysis of key techniques of regional navigation system based on near space vehicle[J]. Telecommunication Engineering, 2014, 54(4):385-391. [38] 阎啸, 唐博, 张天虹, 等. 临近空间飞行器信息系统一体化载荷平台[J]. 航空学报, 2016, 37(S1):S127-S133. YAN Xiao, TANG Bo, ZHANG Tianhong, et al. Payload platform of near space vehicle information system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S127-S133. [39] 莫中秋, 陈威屹, 邓平科. 临近空间浮空器的组网与导航定位方法[J]. 计算机应用, 2018, 38(S2):226-230. MO Zhongqiu, CHEN Weiyi, DENG Pingke. Networking and navigation method based on near space aerostat[J]. Journal of Computer Applications, 2018, 38(S2):226-230. [40] 李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来[J]. 机器人, 2002, 24(5):475-480. LI Lei, YE Tao, TAN Min, et al. Present state and future development of mobile robot technology research[J]. Robot, 2002, 24(5):475-480. [41] 陆玉祥, 万晓莉, 常岑, 等. 车载移动测量系统在大比例尺地形图数学精度检测中的应用[J]. 测绘通报, 2019(6):109-111, 125. DOI:10.13474/j.cnki.11-2246.2019.0196. LU Yuxiang, WAN Xiaoli, CHANG Cen, et al. Application of vehicle-borne mobile surveying system in the mathematical precision detection of large scale topographic map[J]. Bulletin of Surveying and Mapping, 2019(6):109-111, 125. DOI:10.13474/j.cnki.11-2246.2019.0196. [42] 李德仁, 胡庆武, 郭晟, 等. 移动道路测量系统及其在科技奥运中的应用[J]. 科学通报, 2009, 54(3):312-320. LI Deren, HU Qingwu, GUO Sheng, et al. Mobile road surveying system and its application in science olympic game[J]. Chinese Science Bulletin, 2009, 54(3):312-320. [43] 胡文雄. 车载移动测量技术在道路测量中的应用[J]. 工程勘察, 2019, 47(7):62-65. HU Wenxiong. Application of vehicle-mounted mobile measurement technology in road measurement[J]. Geotechnical Investigation & Surveying, 2019, 47(7):62-65. [44] 李德仁. 移动测量技术及其应用[J]. 地理空间信息, 2006, 4(4):1-5. LI Deren. Mobile mapping technology and its applications[J]. Geospatial Information, 2006, 4(4):1-5. [45] 梁明杰, 闵华清, 罗荣华. 基于图优化的同时定位与地图创建综述[J]. 机器人, 2013, 35(4):500-512. LIANG Mingjie, MIN Huaqing, LUO Ronghua. Graph-based SLAM:a survey[J]. Robot, 2013, 35(4):500-512. [46] CHIELLA A C B, MACHADO H N, TEIXEIRA B O S, et al. GNSS/LiDAR-based navigation of an aerial robot in sparse forests[J]. Sensors, 2019, 19(19):4061. [47] 曾庆喜, 邱文旗, 冯玉朋, 等. GNSS/VO组合导航研究现状及发展趋势[J]. 导航定位学报, 2018, 6(2):1-6. ZENG Qingxi, QIU Wenqi, FENG Yupeng, et al. Status and development trend analysis of GNSS/VO integrated navigation system[J]. Journal of Navigation and Positioning, 2018, 6(2):1-6. [48] 邵永社, 陈鹰, 祝小平. 利用影像匹配和摄影测量实现无人机精确导航[J]. 测控技术, 2006, 25(8):79-82. SHAO Yongshe, CHEN Ying, ZHU Xiaoping. Navigating the UAV/RPV accurately using image matching technique and photogrammetric theory[J]. Measurement & Control Technology, 2006, 25(8):79-82. [49] 张奕然, 郭承军, 牛瑞朝. 智能车双目视觉辅助GNSS定位方法研究[J]. 计算机工程与应用, 2016, 52(17):192-197. ZHANG Yiran, GUO Chengjun, NIU Ruizhao. Research on stereo-vision aided GNSS localization for intelligent vehicles[J]. Computer Engineering and Applications, 2016, 52(17):192-197. [50] LANGE S, NIKO, S, PROTZEL P. Autonomous landing for a multirotor UAV using vision[C]//Proceedings of Simpar Intl Conf on Simulation, Modeling & Programming for Autonomous Robots. Vinice, Italy:SMPAR,2008:482-491. [51] 江春红, 苏惠敏, 陈哲. 信息融合技术在INS/GPS/TAN/SMN四组合系统中的应用[J]. 信息与控制, 2001, 30(6):537-542. JIANG Chunhong, SU Huimin, CHEN Zhe. Multi-sensor information fusion technique and it's application in INS/GPS/TAN/SMN integrated navigation systems[J]. Information and Control, 2001, 30(6):537-542. [52] 袁冬莉, 闫建国, 王新民, 等. 无人机组合导航系统信息融合方法研究[J]. 西北工业大学学报, 2006, 24(5):558-561. YUAN Dongli, YAN Jianguo, WANG Xinmin, et al. A DR/RP/GNSS/DNS/TAN/SMN integrated navigation system for UAV based on federated Kalman filtering[J]. Journal of Northwestern Polytechnical University, 2006, 24(5):558-561. [53] 冯黎, 郭承军. 基于GNSS/SINS/双目视觉里程计的车载导航系统分析与设计[J]. 汽车技术, 2019(10):37-41. FENG Li, GUO Chengjun. Analysis and design of car navigation system based on GNSS/SINS/Binocular vision odometer[J]. Automobile Technology, 2019(10):37-41. [54] 傅博, 焦艳梅, 丁夏清, 等. 一种鲁棒的多目视觉惯性即时定位与建图方法[J]. 载人航天, 2019, 25(5):21-25. FU Bo, JIAO Yanmei, DING Xiaqing, et al. A robust multi-camera visual-inertial simultaneous localization and mapping method[J]. Manned Spaceflight, 2019, 25(5):21-25. [55] 郭延宁, 冯振, 马广富, 等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报, 2018, 39(11):1185-1196. GUO Yanning, FENG Zhen, MA Guangfu, et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics, 2018, 39(11):1185-1196. [56] LI Tuan, ZHANG Hongping, GAO Zhouzheng, et al. Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments[J]. Remote Sensing, 2019, 11(6):610. [57] WANG Jinling, GARRATT M, LAMBERT A, et al. Integration of GPS/INS/Vision sensors to navigate unmanned aerial vehicles[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing:[s.n.], 2011. [58] ABABSA F. Advanced 3D localization by fusing measurements from GPS, inertial and vision sensors[C]//Proceedings of 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio, TX, USA:IEEE, 2009. [59] GAKNE P V, O'KEEFE K. Tightly-coupled GNSS/Vision using a sky-pointing camera for vehicle navigation in urban areas[J]. Sensors, 2018, 18(4):1244. [60] 王磊, 陈锐志, 付文举, 等. 一种视觉影像和GNSS测距信号紧耦合定位系统与方法:中国, 201910802812.0[P].[2019-10-28]. WANG Lei, CHEN Ruizhi, FU Wenju, et al. a tightly coupled positioningsystem and approach based on visual images and GNSS ranging signals:CN, 201910802812.0[P].[2019-10-28]. [61] SCHVLER T. On ground-based GPS tropospheric delay estimation[D]. Munich, Germany:Studiengang Geodäsie Und Geoinformation der Universität der Bundeswehr München, 2001. [62] 李国平. 地基GPS水汽监测技术及气象业务化应用系统的研究[J]. 大气科学学报, 2011, 34(4):385-392. LI Guoping. Research of remote sensing technology of atmospheric water vapor by using ground-based GPS and application system of meteorological operation[J]. Transactions of Atmospheric Sciences, 2011, 34(4):385-392. [63] 陈笑娟, 扈成省, 王占伟. 国内外GPS气象学的若干研究应用进展[J]. 测绘科学, 2010, 35(3):216-218. CHEN Xiaojuan, HU Chengsheng, WANG Zhanwei. Research and application progress of national and international GPS meteorology[J]. Science of Surveying and Mapping, 2010, 35(3):216-218. [64] YANG Fei, GUO Jiming, SHI Junbo, et al. A GPS water vapor tomography method based on a genetic algorithm[J]. Atmospheric Measurement Techniques, 2019(1):1-25. [65] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院研究生院, 2004. SONG Shuli. Sensing three dimensional water vapor structure with ground-based GPS network and the application in meteorology[D]. Shanghai:Graduate School of Chinese Academy of Science, 2004. [66] 张豹. 地基GNSS水汽反演技术及其在复杂天气条件下的应用研究[D]. 武汉:武汉大学, 2016. ZHANG Bao. The study of water vapor inversion using ground-based GNSS and its applications in severe weather conditions[D]. Wuhan:Wuhan University, 2016. [67] 江鹏. 地基GNSS探测2D/3D大气水汽分布技术研究[D]. 武汉:武汉大学, 2014. JIANG Peng. The study of retrieving 2D/3D water vapor distribution using ground-based GNSS meteorology[D]. Wuhan:Wuhan University, 2014. [68] 严豪健, 符养, 洪振杰, 等. 天基GPS气象学与反演技术[M]. 北京:中国科学技术出版社, 2006. YAN Haojian, FU Yang, HONG Zhenjie, et al. Space based GNSS meteorology and inversion technology[M]. Beijing:China Science and Technology Press, 2006. [69] 胡雄, 曾桢, 张训械, 等. 大气GPS掩星观测反演方法[J]. 地球物理学报, 2005, 48(4):768-774. HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Atmospheric inversion methods of GPS radio occultation[J]. Chinese Journal of Geophysics, 2005, 48(4):768-774. [70] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [71] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [72] 胡雄, 曾桢, 张训械, 等. 无线电掩星技术及其应用[J]. 电波科学学报, 2002, 17(5):549-556. HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Radio occultation and its application[J]. Chinese Journal of Radio Science, 2002, 17(5):549-556. [73] 李国平, 黄丁发. GPS气象学研究及应用的进展与前景[J]. 气象科学, 2005, 25(6):651-661. LI Guoping, HUANG Dingfa. Advances and prospects in the study of GPS meteorology[J]. Scientia Meteorologica Sinica, 2005, 25(6):651-661. [74] SUN Yueqiang, BAI Weihua, LIU Congliang, et al. The FengYun-3C radio occultation sounder GNOS:a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10):5797-5811. [75] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10):1364-1378. YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1364-1378. [76] 张宝成, 欧吉坤, 李子申, 等. 利用精密单点定位求解电离层延迟[J]. 地球物理学报, 2011, 54(4):950-957. ZHANG Baocheng, OU Jikun, LI Zishen, et al. Determination of ionospheric observables with precise point positioning[J]. Chinese Journal of Geophysics, 2011, 54(4):950-957. [77] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[D]. 武汉:中国科学院大学, 2012. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[D]. Wuhan:University of Chinese Academy of Science, 2012. [78] 李子申. GNSS/Compass电离层时延修正及TEC监测理论与方法研究[D]. 武汉:中国科学院大学, 2012. LI Zishen. Study on the mitigation of ionosphere delay and the monitoring of global ionospheric TEC based on GNSS/Compass[D]. Wuhan:University of Chinese Academy of Science, 2012. [79] 徐继生, 邹玉华, 马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析[J]. 地球物理学报, 2005, 48(4):759-767. XU Jisheng, ZOU Yuhua, MA Shuying. Time-dependent 3-D computerized ionospheric tomography with ground-based GPS network and occultation observations[J]. Chinese Journal of Geophysics, 2005, 48(4):759-767. [80] 吴小成, 胡雄, 张训械, 等. 电离层GPS掩星观测改正TEC反演方法[J]. 地球物理学报, 2006, 49(2):328-334. WU Xiaocheng, HU Xiong, ZHANG Xunxie, et al. A calibrated TEC method for inversion of ionospheric GPS occultation data[J]. Chinese Journal of Geophysics, 2006, 49(2):328-334. [81] 蒋廷臣, 王秀萍. 层析模型在GNSS探测电离层中的研究进展[J]. 测绘科学, 2009, 34(6):102-104, 130. JIANG Tingchen, WANG Xiuping. Research development of ionospheric tomography models based on GNSS[J]. Science of Surveying and Mapping, 2009, 34(6):102-104, 130. [82] 杨剑, 吴云, 周义炎. 基于电离层层析成像技术探测汶川地震前电离层异常[J]. 大地测量与地球动力学, 2011, 31(1):9-14. YANG Jian, WU Yun, ZHOU Yiyan. Probe into seismo-ionospheric anomaly of Wenchuan Ms8.0 earthquake based on computerized ionospheric tomography[J]. Journal of Geodesy and Geodynamics, 2011, 31(1):9-14. [83] 姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4):385-395. DOI:10.11947/j.AGCS.2016.20150384. YAO Yibin, ZHAI Changzhi, KONG Jian, et al. The pre-earthquake ionosphere anomaly of the 2015 Nepal earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):385-395. DOI:10.11947/j.AGCS.2016.20150384. [84] 唐龙, 郭博峰, 郑凯. 利用GPS网观测反射海啸波引发的电离层扰动[J]. 地球物理学报, 2017, 60(5):1643-1649. TANG Long, GUO Bofeng, ZHENG Kai. Observation of ionospheric disturbances induced by reflected tsunami waves using GPS network[J]. Chinese Journal of Geophysics, 2017, 60(5):1643-1649. [85] 唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2):507-513. TANG Long, GUO Bofeng, LI Zhe. Detection of ionospheric disturbances driven by the 2011 Tohoku tsunami using GPS network in Japan[J]. Chinese Journal of Geophysics, 2017, 60(2):507-513. [86] 万玮, 李黄, 洪阳, 等. GNSS-R遥感观测模式及陆面应用[J]. 遥感学报, 2015, 19(6):882-893. WAN Wei, LI Huang, HONG Yang, et al. Definition and application of GNSS-R observation patterns[J]. Journal of Remote Sensing, 2015, 19(6):882-893. [87] 李云伟. 基于GNSS-R的积雪厚度测量理论与方法研究[D]. 武汉:武汉大学, 2019. LI Yunwei. Theories and methods of GNSS-R based snow depth estimation[D]. Wuhan:Wuhan University, 2019. [88] 王帅. GNSS-R海面测高技术的国内外研究及未来展望[J]. 科技资讯, 2018, 16(16):49-51. WANG Shuai. Research status and future of GNSS-R sea height retrival technology[J]. Science & Technology Information, 2018, 16(16):49-51. [89] 王艺燃, 洪学宝, 张波, 等. 基于DDMR辅助的GNSS-R载波相位差测高方法[J]. 北京航空航天大学学报, 2014, 40(2):257-261. WANG Yiran, HONG Xuebao, ZHANG Bo, et al. Carrier phase difference estimation method based on DDMR-assistance for GNSS-R altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):257-261. [90] 邵连军, 张训械, 王鑫, 等. 利用GNSS-R信号反演海浪波高[J]. 武汉大学学报(信息科学版), 2008, 33(5):475-478. SHAO Lianjun, ZHANG Xunxie, WANG Xin, et al. Sea surface wave height retrieve using GNSS-R signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):475-478. [91] 刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11):955-960. LIU Jingnan, SHAO Lianjun, ZHANG Xunxie. Advances in GNSS-R studies and key technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):955-960. [92] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11):2735-2744. YAN Songhua, GONG Jianya, ZHANG Xunxie, et al. Ground based GNSS-R observations for soil moisture[J]. Chinese Journal of Geophysics, 2011, 54(11):2735-2744. [93] 杨磊. GNSS-R农田土壤湿度反演方法研究[J]. 测绘学报, 2018, 47(1):134. DOI:10.11947/j.AGCS.2017.20170356. YANG Lei. Study of GNSS-R cropland soil moisture retrieval method[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):134. DOI:10.11947/j.AGCS.2017.20170356. [94] 张云, 郭建京, 袁国良, 等. 基于GNSS反射信号的海冰检测的研究[J]. 全球定位系统, 2013, 38(2):1-6. ZHANG Yun, GUO Jianjing, YUAN Guoliang, et al. Sea ice study based on GNSS-R signal[J]. GNSS Word of China, 2013, 38(2):1-6. [95] 吕帆, 修春娣, 王峰, 等. GNSS-R海面风场反演模型仿真分析[J]. 导航定位学报, 2018, 6(3):87-91, 97. LÜ Fan, XIU Chundi, WANG Feng, et al. Simulation analysis on GNSS-R ocean surface wind field retrieval model[J]. Journal of Navigation and Positioning, 2018, 6(3):87-91, 97. [96] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2), 951-964. [97] 张训械, 邵连军, 王鑫, 等. GNSS-R地基实验[J]. 全球定位系统, 2006, 31(5):4-8, 12. ZHANG Xunxie, SHAO Lianjun, WANG Xin, et al. GNSS-R ground based experimental campaign[J]. GNSS World of China, 2006, 31(5):4-8, 12. [98] 王博, 朱云龙, 高超群, 等. GNSS-R双基SAR运动目标成像技术探讨[J]. 导航定位学报, 2019, 7(1):59-64. WANG Bo, ZHU Yunlong, GAO Chaoqun, et al. Discussion on imaging technology of GNSS-R bistatic SAR moving target[J]. Journal of Navigation and Positioning, 2019, 7(1):59-64. [99] 田卫明, 曾涛, 胡程. 基于导航信号的BiSAR成像技术[J]. 雷达学报, 2013, 2(1):39-45. TIAN Weiming, ZENG Tao, HU Cheng. Imaging algorithm for bistatic SAR based on GNSS signal[J]. Journal of Radars, 2013, 2(1):39-45. [100] MA Hui, ANTONIOU M, CHERNIAKOV M. Passive GNSS-based SAR imaging and opportunities using Galileo E5 signals[J]. Science China Information Sciences, 2015, 58(6):1-11. [101] 杨磊, 朱云龙, 杨东凯. GNSS-R信号的海面SAR成像应用[J]. 导航定位学报, 2017, 5(3):94-100. YANG Lei, ZHU Yunlong, YANG Dongkai. Application of GNSS-R signals in sea surface SAR imaging[J]. Journal of Navigation and Positioning, 2017, 5(3):94-100. [102] 张国栋, 郭健, 杨东凯, 等. 星载GNSS-R海冰边界探测方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):668-674. ZHANG Guodong, GUO Jian, YANG Dongkai, et al. Sea ice edge detection using spaceborne GNSS-R signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):668-674. [103] LI Yonghong, RIZOS C, DONSKOI E, et al. 3D multi-static SAR system for terrain imaging based on indirect GPS signals[J]. Journal of Global Positioning Systems, 2002, 1(1):34-39. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Weitong WU, Chi CHEN, Bisheng YANG, Xiufeng HE. Robust multi-sensor fusion-based odometry method of LiDAR, millimeter-wave radar and IMU in degraded scenes [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1677-1686. |
| [3] | Kai YAN, Jianming XU, Qiao WANG. Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1664-1676. |
| [4] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [5] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [6] | Wenjun HUANG, Qun SUN, Qing XU, Long FAN, Anzhu YU, Fubing ZHANG. A global coastal DEM super-resolution reconstruction method integrating frequency-domain features and topographic priors [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1518-1531. |
| [7] | Tianjun WU, Manjia LI, Jiancheng LUO, Ziqi LI, Xiaodong HU, Lijing GAO, Zhanfeng SHEN. Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1215-1229. |
| [8] | Yufu ZANG, Shuye WANG, Zhen DONG, Chi CHEN, Ronggang HUANG. High-precision extraction of building point cloud facade structure based on PCF-Net network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1243-1253. |
| [9] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [10] | Jie WAN, Zhong XIE, Yongyang XU, Liufeng TAO. A U-shaped graph convolution network method for semantic segmentation of vehicle LiDAR point clouds towards urban road scenes [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1280-1293. |
| [11] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [12] | Haifeng LI, Wang GUO, Mengwei WU, Chengli PENG, Qing ZHU, Yu LIU, Chao TAO. Visual-language joint representation and intelligent interpretation of remote sensing geo-objects: principles, challenges and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 853-872. |
| [13] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [14] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [15] | Guangao XING, Guanming LU, Bin HAN. MAFUNet: water body segmentation algorithm for SAR images combining attention mechanisms and active contour loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 924-936. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||