[1] 熊年禄, 唐存琛, 李行健. 电离层物理概论[M]. 武汉:武汉大学出版社, 1999:197-206. XIONG Nianlu, TANG Cunchen, LI Xingjian. The ionosphere physics probability[M]. Wuhan:Wuhan University Press, 1999:197-206. [2] GULYAEVA T L. Empirical model of ionospheric storm effects on the F2 layer peak height associated with changes of peak electron density[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A2):A02302. [3] WEN Debao, YUAN Yunbin, OU Jikun, et al. Ionospheric response to the geomagnetic storm on August 21, 2003 over China using GNSS-based tomographic technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3212-3217. [4] 孙文杰, 宁百齐, 赵必强, 等. 2015年3月磁暴期间中国中低纬地区电离层变化分析[J]. 地球物理学报, 2017, 60(1):1-10. SUN Wenjie, NING Baiqi, ZHAO Biqiang, et al. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015[J]. Chinese Journal of Geophysics, 2017, 60(1):1-10. [5] 杨鼎, 方涵先, 杨升高, 等. 磁暴期间全球TEC扰动特性分析[J]. 空间科学学报, 2017, 37(5):524-530. YANG Ding, FANG Hanxian, YANG Shenggao, et al. Statistical study on the response of TEC to geomagnetic storms[J]. Chinese Journal of Space Science, 2017, 37(5):524-530. [6] 张奇伟, 郭兼善, 章公亮, 等. 不同类型磁暴和中低纬电离层暴的关系[J]. 地球物理学报, 1995, 38(5):581-589. ZHANG Qiwei, GUO Jianshan, ZHANG Gongliang, et al. Mid-and low-latitude ionospheric responses to different type of magnetic storm[J]. Chinese Journal of Geophysics, 1995, 38(5):581-589. [7] 万德焕, 黄江, 徐杰, 等. 中国低纬地区foF2实测数据缺失的分布特征研究[J]. 地球物理学进展, 2015, 30(5):2071-2081. WAN Dehuan, HUANG Jiang, XU Jie, et al. A statistical analysis of occurrence characteristics of missed-foF2 observations over low-latitude region of China[J]. Progress in Geophysics, 2015, 30(5):2071-2081. [8] 王宁波, 袁运斌, 李子申, 等. 不同NeQuick电离层模型参数的应用精度分析[J]. 测绘学报, 2017, 46(4):421-429. DOI:10.11947/j.AGCS.2017.20160400. WANG Ningbo, YUAN Yunbin, LI Zishen, et al. Performance analysis of different NeQuick ionospheric model parameters[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):421-429. DOI:10.11947/j.AGCS.2017.20160400. [9] SSESSANGA N, KIM Y H, KIM E, et al. Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC[J]. Journal of the Korean Physical Society, 2015, 66(10):1599-1610. [10] NAVA B, COÏSSON P, MIRÓ AMARANTE G, et al. A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion[J]. Annals of Geophysics, 2005, 48(2):313-320. [11] YU Xiao, SHE Chengli, LIU Dun, et al. A preliminary study of the NeQuick model over China using GPS TEC and ionosonde data[C]//Proceedings of ISAPE2012. Xi'an. China:IEEE, 2012:627-630. [12] 袁运斌, 欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J]. 测绘学报, 1999, 28(2):110-114. DOI:10.3321/j.issn:1001-1595.1999.02.001. YUAN Yunbin, OU Jikun. The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(2):110-114. DOI:10.3321/j.issn:1001-1595.1999.02.001. [13] SCHAER S. Mapping and predicting the earth's ionosphere using the global positioning system[D]. Switzerland:Bern University. [14] 章红平, 施闯, 唐卫明. 地基GPS区域电离层多项式模型与硬件延迟统一解算分析[J]. 武汉大学学报(信息科学版), 2008, 33(8):805-809. ZHANG Hongping, SHI Chuang, TANG Weiming. United solution to polynomial VTEC modeling and DCB analysis using ground-based GPS observations[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):805-809. [15] ITU. Recommendation ITU-R P.1239-2. ITU-R reference ionospheric characteristics[R]. Geneva:ITU, 2009. [16] European Commission. Ionospheric correction algorithm for Galileo single frequency users[R].[S.l.]:European Commission, 2015. |