Acta Geodaetica et Cartographica Sinica ›› 2021, Vol. 50 ›› Issue (9): 1222-1239.doi: 10.11947/j.AGCS.2021.20200610
• Geodesy and Navigation • Previous Articles Next Articles
LIU Jihong, HU Jun, LI Zhiwei, ZHU Jianjun
Received:
2020-12-22
Revised:
2021-06-07
Published:
2021-10-09
Supported by:
CLC Number:
LIU Jihong, HU Jun, LI Zhiwei, ZHU Jianjun. Estimation of 3D coseismic deformation with InSAR: an improved SM-VCE method by window optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1222-1239.
[1] LI Gang, LIN Hui, YE Qinghua, et al. Acceleration of glacier mass loss after 2013 at the Mt. Qomolangma[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 60-69. DOI:10.11947/j.JGGS.2020.0406. [2] TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 27-37. DOI:10.11947/j.JGGS.2019.0204. [3] ZISK S H. Lunar topography: first radar-interferometer measurements of the alphonsus-ptolemaeus-arzachel region[J]. Science, 1972, 178(4064): 977-980.DOI:10.1126/science.178.4064.977. [4] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191. DOI:10.1029/JB094iB07p09183. [5] FIALKO Y, SANDWELL D, SIMONS M, et al. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit [J]. Nature, 2005, 435(7040): 295-299. DOI:10.1038/nature03425. [6] HU Jun, LI Zhiwei, DING Xiaoli, et al. Resolving three-dimensional surface displacements from InSAR measurements: a review[J]. Earth-Science Reviews, 2014, 133: 1-17. DOI:10.1016/j.earscirev.2014.02.005. [7] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486. LI Shanshan, LI Zhiwei, HU Jun, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476-1486. [8] 单新建, 宋小刚, 韩宇飞, 等. 汶川Ms 8.0地震前InSAR垂直形变场变化特征研究[J]. 地球物理学报, 2009, 52(11): 2739-2745. SHAN Xinjian, SONG Xiaogang, HAN Yufei, et al. The characteristics of surface vertical deformation before the Wenchuan Ms8.0 earthquake from InSAR[J]. Chinese Journal of Geophysics, 2009, 52(11): 2739-2745. [9] WANG Leyang, ZHAO Xiong. Determination of smoothing factor for the inversion of co-seismic slip distribution [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 25-35. DOI:10.11947/j.JGGS.2020.0103. [10] WRIGHT T J, PARSONS B E, LU Zhong. Toward mapping surface deformation in three dimensions using InSAR [J]. Geophysical Research Letters, 2004, 31(1): 169-178. DOI:10.1029/2003GL018827. [11] 秦晓琼, 杨梦诗, 王寒梅, 等. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用[J]. 测绘学报, 2016, 45(6): 713-721. DOI:10.11947/j.AGCS.2016.20150440. QIN Xiaoqiong, YANG Mengshi, WANG Hanmei, et al. Application of high-resolution PS-InSAR in deformation characteristics probe of urban rail transit[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 713-721. DOI:10.11947/j.AGCS.2016.20150440. [12] MICHEL R, AVOUAC J P, TABOURY J. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875-878. DOI:10.1029/1999GL900138. [13] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16): L16311. [14] GRANDIN R, KLEIN E, MÉTOIS M, et al. Three-dimensional displacement field of the 2015 Mw 8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 2016, 43(6): 2552-2561.DOI:10.1002/2016GL067954. [15] FUNNING G J, PARSONS B, WRIGHT T J, et al. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B9). DOI:10.1029/2004JB003338. [16] HU Jun, LI Zhiwei, ZHU Jianjun, et al. 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements[J]. Journal of Geodesy, 2012, 86(11): 1029-1041. DOI:10.1007/s00190-012-0563-6. [17] JUNG H S, LU Z, WON J S, et al. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea volcano, Hawaii[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 34-38.DOI:10.1109/LGRS.2010.2051793. [18] LI Jia, LI Zhiwei, WU Lixin, et al. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: use of synthetic aperture radar pixel offset-small baseline subset technique[J]. Journal of Hydrology, 2018, 559: 596-608. [19] FIALKO Y, SIMONS M, AGNEW D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector mine earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 2001, 28(16): 3063-3066. [20] 王志伟. 基于多源InSAR数据的三维地表形变解算方法研究[J]. 测绘学报, 2019, 48(9): 1206. DOI:10.11947/j.AGCS.2019.20180490. WANG Zhiwei. Research on resolving of three-dimensional displacement from multi-source InSAR data[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1206. DOI:10.11947/j.AGCS.2019.20180490. [21] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144. DOI:10.11947/j.AGCS.2019.20180188. [22] JIANG Houjun, FENG Guangcai, WANG Teng, et al. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: application to the 2016 Kumamoto (Japan) earthquake [J]. Geophysical Research Letters, 2017, 44: 1758-1767. DOI:10.1002/2016GL072253. [23] HE Ping, WEN Yangmao, XU Caijun, et al. Complete three-dimensional near-field surface displacements from imaging geodesy techniques applied to the 2016 Kumamoto earthquake[J]. Remote Sensing of Environment, 2019, 232: UNPS 111321.DOI:10.1016/j.rse.2019.111321. [24] HE Ping, WEN Yangmao, XU Caijun, et al. High-quality three-dimensional displacement fields from new-generation SAR imagery: application to the 2017 Ezgeleh, Iran, earthquake[J]. Journal of Geodesy, 2019, 93(4): 573-591.DOI:10.1007/s00190-018-1183-6. [25] HU Jun, LI Zhiwei, SUN Qian, et al. Three-dimensional surface displacements from InSAR and GPS measurements with variance component estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 754-758. [26] LUO Haipeng, CHEN Ting. Three-dimensional surface displace-ment field associated with the 25 April 2015 Gorkha, Nepal, earthquake: solution from integrated InSAR and GPS measurements with an extended SISTEM approach [J]. Remote Sensing, 2016, 8(7): rs8070559. DOI:10.3390/rs8070559. [27] GUDMUNDSSON S, SIGMUNDSSON F, CARSTENSEN J M. Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): 2250. DOI:10.1029/2001jb000283. [28] 王霞迎, 张菊清, 张勤, 等. 升降轨InSAR和GPS数据集成反演西安形变场 [J]. 测绘学报, 2016, 45(7): 810-817. DOI:10.11947/j.AGCS.2016.20150485. WANG Xiaying, ZHANG Juqing, ZHANG Qin, et al. Inferring multi-dimensional deformation filed in Xi’an by combining insar of ascending and descending orbits with GPS data [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 810-817. DOI:10.11947/j.AGCS.2016.20150485. [29] 罗海滨, 何秀凤, 刘焱雄. 利用DInSAR和GPS综合方法估计地表3维形变速率[J]. 测绘学报, 2008, 37(2): 168-171. LUO Haibin, HE Xiufeng, LIU Yanxiong. Estimation of three-dimensional surface motion velocities using integration of DInSAR and GPS[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2): 168-171. [30] GUGLIELMINO F, NUNNARI G, PUGLISI G, et al. Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1815-1826. [31] WANG Xiaowen, LIU Guoxiang, YU Bing, et al. An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar) [J]. Remote Sensing of Environment, 2015, 170: 388-404. DOI:10.1016/j.rse.2015.09.024. [32] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [33] WANG Teng, WEI Shengji, SHI Xuhua, et al. The 2016 Kaikōura earthquake: simultaneous rupture of the subduction interface and overlying faults [J]. Earth and Planetary Science Letters, 2018, 482: 44-51. DOI:10.1016/j.epsl.2017.10.056. [34] XU Wenbin, FENG Guangcai, MENG Lingsen, et al. Tran-spressional rupture cascade of the 2016 Mw 7.8 Kaikoura earthquake, New Zealand [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2396-2409. DOI:10.1002/2017JB015168. [35] LIU Jihong, HU Jun, LI Zhiwei, et al. A method for measuring 3-D surface deformations with InSAR based on strain model and variance component estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 239-250. [36] LIU Jihong, HU Jun, XU Wenbin, et al. Complete three-dimensional coseismic deformation field of the 2016 central Tottori earthquake by integrating left- and right-looking InSAR observations with the improved SM-VCE method[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 12099-12115. [37] WANG Teng, JÓNSSON S. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3271-3278. DOI:10.1109/JSTARS.2014.2387865. [38] SCOTT C P, ARROWSMITH R, NISSEN E, et al. The M7 2016 Kumamoto, Japan, earthquake: 3-D deformation along the fault and within the damage zone constrained from differential LiDAR topography [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6138-6155. DOI:10.1029/2018JB015581. [39] LIANG Hongyu, ZHANG Lei, DING Xiaoli, et al. Suppression of coherence matrix bias for phase linking and ambiguity detection in MT InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2):1263-1274.DOI:10.1109/TGRS.2020.3000991. [40] 甘洁, 胡俊, 李志伟, 等. 基于InSAR和地应变特征获取2015年Mw7.2级Murghab地震同震三维地表形变场[J]. 中国科学:地球科学, 2018, 48(10): 1335-1351. GAN Jie, HU Jun, LI Zhiwei, et al. Mapping three-dimensional co-seismic surface deformations associated with the 2015 Mw7.2 Murghab earthquake based on InSAR and characteristics of crustal strain [J]. SCIENCE CHINA Earth Sciences, 2018, 48(10): 1335-1351. [41] 胡圣武, 肖本林. 现代测量数据处理理论与应用[M]. 北京: 测绘出版社, 2016. HU Shengwu, XIAO Benlin. Modern theory and application of surveying data processing[M]. Beijing: Surveying and Mapping Press, 2016. [42] SUDHAUS H, JONSSON S. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn earthquake, Iceland[J]. Geophysical Journal International, 2009, 176(2): 389-404. DOI:10.1111/j.1365-246X.2008.03989.x. [43] 张亚彬, 王利, 范丽红, 等. 组合粗差探测的MHSS ARAIM算法[J]. 测绘学报, 2019, 48(1): 9-17.DOI: 10.11947/j.AGCS.2019.20170367 ZHANG Yabin, WANG Li, FAN Lihong, et al. MHSS ARAIM algorithm combined with gross error detection[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 9-17.DOI: 10.11947/j.AGCS.2019.20170367. [44] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. DOI:10.11947/j.JGGS.2019.0101. [45] XU Xiaohua, SANDWELL D T, WARD L A, et al. Surface deformation associated with fractures near the 2019 Ridgecrest earthquake sequence[J]. Science, 2020, 370(6516): 605-608. DOI: 10.1126/SCIENCE.ABD1690. [46] MONTAZERI Sina, XIAO Xiangzhu, EINEDER Michael, et al. Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack TerraSAR-X data stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6868-6878. DOI:10.1109/TGRS.2016.2585741. [47] LI Zhiwei, DING Xiaoli, HUANG C, et al. Improved filtering parameter determination for the Goldstein radar interferogram filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(6): 621-634. DOI:10.1016/j.isprsjprs.2008.03.001. [48] CHEN C W, ZEBKER H A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. DOI:10.1109/TGRS.2002.802453. [49] XU X, SANDWELL D T, WARD L A, et al. Surface deformation associated with fractures near the 2019 Ridgecrest earthquake sequence[J]. Science, 2020, 370(6516): 605-608. DOI:10.1126/SCIENCE.ABD1690. |
[1] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[2] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[3] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[4] | LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. |
[5] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[6] | MA Zhangfeng, JIANG Mi, LI Guihua, HUANG Teng. Effects of spatial network on time series InSAR phase unwrapping: take the Delaunay and Dijkstra networks for example [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 248-257. |
[7] | LI Tao, TANG Xinming, GAO Xiaoming, CHEN Qianfu, ZHANG Xiang. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 891-904. |
[8] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[9] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, FENG Can. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611. |
[10] | LIU Qinghao, ZHANG Yonghong, DENG Min, WU Hongan, KANG Yonghui, WEI Jujie. Time series prediction method of large-scale surface subsidence based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. |
[11] | LOU Liangsheng, LIU Zhiming, ZHANG Hao, QIAN Fangming, HUANG Yan. TH-2 satellite engineering design and implementation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264. |
[12] | XIE Qinghua, ZHU Jianjun, WANG Changcheng, FU Haiqiang, ZHANG Bing. A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1303-1310. |
[13] | ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144. |
[14] | WANG Leyang, GAO Hua, FENG Guangcai. Triggering relations and stress effects analysis of two Mw>6 earthquakes in southwest Taiwan based on InSAR and GPS data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1244-1253. |
[15] | GUO Shanchuan, ZHANG Shaoliang, HOU Huping, ZHU Qianlin, LIU Run. Monitoring ground deformation of non-urban areas based on temporarily coherent targets [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 106-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||