Acta Geodaetica et Cartographica Sinica ›› 2021, Vol. 50 ›› Issue (7): 891-904.doi: 10.11947/j.AGCS.2021.20200199
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
LI Tao, TANG Xinming, GAO Xiaoming, CHEN Qianfu, ZHANG Xiang
Received:
2020-05-21
Revised:
2021-06-03
Published:
2021-08-13
Supported by:
CLC Number:
LI Tao, TANG Xinming, GAO Xiaoming, CHEN Qianfu, ZHANG Xiang. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 891-904.
[1] WINOKUR R S. Operational use of civil space-based synthetic aperture radar(SAR) [R]. Pasadena, California: JPL Publication, 1996. [2] TANG Xinming, LI Tao, GAO Xiaoming Gao, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 27-37. [3] 黄国满. 机载多波段多极化干涉SAR测图系统——CASMSAR[J]. 测绘科学, 2014, 39(8): 111-115. HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization: CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111-115. [4] 刘哲延, 姚秀光, 刘东烈. 机载毫米波InSAR系统在贵州山区1∶5000专题测绘产品生产中的应用[C]. 第七届高分辨率对地观测学术年会.长沙:高分辨率对地观测学术联盟, 2020. LIU Zheyan, YAO Xiuguang, LIU Donglie. The application of airborne millimeter-wave InSAR system for producing thematic surveying and mapping achievements in scale of 1∶5000 in mountainous area of Guizhou[C]. The 7th China High Resolution Earth Observation Conference. Changsha, China:Academic Consortium for High Resolution Earth Observation, 2020. [5] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10): 1252-1264.DOI: 10.11947/j.AGCS.2020.20200175. LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264.DOI: 10.11947/j.AGCS.2020.20200175. [6] 国家测绘局. 中华人民共和国测绘行业标准: 基础地理信息数字成果 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 数字高程模型 CH/T 9009.2—2010[S]. 北京: 测绘出版社, 2010. National Bureau of Surveying and Mapping. Surveying and Mapping Industry Standard for the People’s Republic of China: Digital Products of Fundamental Geographic Informa-tion 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 Digital Elevation Models CH/T 9009.2—2010[S]. Beijing: Surveying and Mapping Publishing House, 2010. [7] 国家测绘局. 中华人民共和国测绘行业标准: 基础地理信息数字成果 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 数字正射影像图 CH/T 9009.3—2010[S]. 北京: 测绘出版社, 2010. National Bureau of Surveying and Mapping. Surveying and Mapping Industry Standard for the People’s Republic of China: Digital Products of Fundamental Geographic Information 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 Digital Orthophoto Maps CH/T 9009.3—2010[S]. Beijing: Surveying and Mapping Publishing House, 2010. [8] Department of Defense. Performance specification digital terrain elevation data (DTED) MIL-PRF-89020B[S]. Reston, VA: National Imagery and Mapping Agency, 2000. [9] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341. [10] GAO Xiaoming, LIU Yaolin, LI Tao, et al. High precision DEM generation algorithm based on InSAR multi-look iteration[J]. Remote Sensing, 2017, 9(7): 741. [11] 李志林, 朱庆, 谢潇. 数字高程模型 [M]. 北京: 科学出版社. 2017. Li Zhilin, Zhu Qing, Xie Xiao. Digital Elevation Model[M]. Beijing: Science Press. 2017. [12] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 数字测绘成果质量检查与验收 GB/T 18316—2008[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Recommends national standard of the People’s Republic of China: Specifications for Inspection and Acceptance of Quality of Digital Surveying and Mapping Achievements GB/T 18316—2008[S]. Beijing: China Standards Press, 2008. [13] RIZZOLI P, BRÄUTIGAM B, KRAUS T, et al. Relative height error analysis of TanDEM-X elevation data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 30-38. [14] KONECNY G, SCHUHR W. Reliability of radar image data[C]//ISPRS 88 Kyoto-Congress. Kyoto, Japan:ISPRS, 1988. [15] 费文波, 张过, 唐新明, 等. 基于有理多项式模型的星载InSAR影像制作数字高程模型的研究[J]. 测绘学报, 2014, 43(1): 83-88. FEI Wenbo, ZHANG Guo, TANG Xinming, et al. Research of DEM generation by spaceborne InSAR images based RFM model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1): 83-88. [16] FRANZ W. LEBER L. Radargrammetric image processing [M]. Boston, London: Artech House. 1989. [17] GISINGER C, BALSS U, PAIL R, et al. Precise three-dimensional stereo localization of corner reflectors and persistent scatterers with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1782-1802. [18] EINEDER M,GISINGER C,BALSS U, et al. SAR imaging geodesy-recent results for TerraSAR-X and for Sentinel-1[C]//ESA Fringe Workshop.Helsinki,Finland:ESA, 2017. [19] HONG S, CHOI Y, PARK I, et al. Comparison of orbit-based and time-offset-based geometric correction models for SAR satellite imagery based on error simulation[J]. Sensors, 2017, 17(12): 170. [20] MONTAZERI S, GISINGER C, EINEDER M, et al. Automatic detection and positioning of ground control points using TerraSAR-X multiaspect acquisitions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2613-2632. [21] 丁刘建, 陶秋香, 李涛, 等. 高分三号SAR影像广域范围联合几何检校技术[J]. 测绘学报, 2020, 49(5): 598-610. DING Liujian, TAO Qiuxiang, LI Tao, et al. A joint geometric calibration technique for GF-3 SAR image in wide area[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 598-610. [22] EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy: toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661-671. [23] TOUTIN T, CARBONNEAU Y. MOS and Seasat image geometric corrections[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3): 603-609. [24] EVANS D L, ALPERS W, CAZENAVE A, et al. Seasat: a 25-year legacy of success[J]. Remote Sensing of Environment, 2005, 94(3): 384-404. [25] COTE S, SRIVASTAVA S, MUIR S, et al. Radarsat-1 and -2 government calibration activities[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE, 2009. [26] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): 361-393. [27] LIU Yongxue, HU Chuanmin, DONG Yanzhu, et al. Geometric accuracy of remote sensing images over oceans: the use of global offshore platforms[J]. Remote Sensing of Environment, 2019, 222: 244-266. [28] WILLIAMS D, WANG Yiman, FITZGERALD G, et al. Radarsat-2: image quality and calibration update[C]//European Conference on Synthetic Aperture Radar.Hamburg, Germany:VDE, 2016. [29] TOUTIN T, CHENIER R. 3-D radargrammetric modeling of Radarsat-2 ultrafine mode: preliminary results of the geometric calibration [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 611-615. [30] JOHNSEN H, LAUKNES L, GUNERIUSSEN T. Geocoding of fast-delivery ERS-l SAR image mode product using DEM data[J]. International Journal of Remote Sensing, 1995, 16(11): 1957-1968. [30] MOHR J J, MADSEN S N. Geometric calibration of ERS satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 842-850. [32] SHIMADA M, ISOGUCHI O, TADONO T, et al. PALSAR CalVal summary(Jaxa-PI193)[C]//IGARSS2008.Boston, USA:IGARSS, 2007. [33] COVELLO F, BATTAZZA F, COLETTA A, et al. COSMO-SkyMed an existing opportunity for observing the earth [J]. Journal of Geodynamics, 2010, 49(3-4): 171-180. [34] SCHMIDT K, REIMANN J, RAMON N T, et al. Geometric accuracy of sentinel-1A and 1B derived from SAR raw data with GPS surveyed corner reflector positions[J]. Remote Sensing, 2018, 10(4): 523. [35] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. [36] BAMLER R. Interferometric stereo radargrammetry: absolute height determination from ERS-Envisat interferograms[C]//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2000. [37] 范军, 李涛, 左小清, 等. 利用参数独立分解的星载SAR干涉测量检校方法[J]. 测绘学报, 2019, 48(6): 737-746. FAN Jun, LI Tao, ZUO Xiaoqing, et al. Interferometric calibration method for spaceborne SAR based on independent parameter decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 737-746. [38] 唐新明, 李涛, 高小明, 等. 雷达卫星自动成图的精密干涉测量关键技术[J]. 测绘学报, 2018, 47(6): 730-740. TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping application using automatic SAR imaging[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 730-740. [39] MONTENBRUCK O, WERMUTH M, KAHLE R. GPS based relative navigation for the TanDEM-X mission: first flight results[J]. Navigation, 2011, 58(4): 293-304. [40] GONZÁLEZ J H, WALTER ANTONY J M, BACHMANN M, et al. Bistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 3-11. [41] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学, 2016, 9(1): 16-29. LIANG Bin, ZHU Hailong, ZHANG Tao, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-29. [42] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720. [43] SCHTTLER B,EINEDER M,KNPFLE W,et al. Operational interferometric ERS TanDEM data processing[C]. Proceedings of the CEOS SAR Workshop.Toulouse, France:DLR, 1999. [44] BÄHR H. Orbital effects in spaceborne synthetic aperture radar interferometry[M]. [S.l.]Scientific Publishing. 2013. [45] SEYMOUR M, CUMMING I. Updating DEMs using Radarsat-1 data[J]. Canadian Journal of Remote Sensing, 2004, 30(6): 927-942. [46] TOUTIN T, OMARI K. DTM generation with Radarsat-2 data without GCP[C]. International Archives of Photogrammetry and Remote Sensing. Hannover, Germany: ISPRS,2011. [47] 李新武, 郭华东, 李震. Envisat/ASAR多角度干涉雷达数据山区DEM生成及精度分析 [J]. 遥感学报, 2009, 13(2): 276-281.[J]. 遥感学报, 2009, 13(2): 276-281. LI Xinwu, GUO Huadong, LI Zhen. DEM generation and accuracy analysis on rugged terrain using Envisat/ASAR multi-angle InSAR data[J]. Journal of Remote Sensing, 2009, 13(2): 276-281. [48] WEGMVLLER U, SANTORO M, WERNER C, et al. DEM generation using ERS-Envisat interferometry[J]. Journal of Applied Geophysics, 2009, 69(1): 51-58. [49] SHAWKY M, MOUSSA A, HASSAN Q K, et al. Pixel-based geometric assessment of channel networks/orders derived from global spaceborne digital elevation models[J]. Remote Sensing, 2019, 11(3): 235. [50] ROSA R A S, OLIVEIRA C G, RODRIGUES T G, et al. Repeat pass interferometry using ALOS-2 PALSAR-2 data (study case in Brazil)[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,: 107-113. [51] 姜德才. 重轨卫星InSAR技术在多云雨山区DEM生成及更新中的应用研究[D]. 北京: 中国测绘科学研究院, 2017. JIANG Decai. Repeat-pass spaceborne SAR interferometry for DEM generation in cloudy-rainy mountainous area[D]. Beijing: Chinese Academy of Surveying and Mapping, 2017. [52] RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132: 119-139. [53] LOMBARDI N, LORUSSO R, FASANO L, et al. Interferometric COSMO-SkyMed spotlight DEM generation[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China:IEEE, 2016. [54] AGRAWAL R, DAS A, RAJAWAT A S. Accuracy assessment of digital elevation model generated by SAR stereoscopic technique using COSMO-SkyMed data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(10): 1739-1747. [55] GHANNADI M A, ENAYATI H, KHESALI E. Interferometric Sentinel-1 DEM generation: a case study in Tehran, Iran[C]. ISPRS Internatinal Joint Conference. Tehran, Iran:ISPRS, 2017. [56] LI Tao, TANG Xinming, CHEN Qianfu, et al. Research on the interferograms selection principles using Gaofen-3 for DSM production[C]//2019 Asia-Pacific Conference on Synthetic Aperture Radar.Xiamen, China:[s.n.],2019. |
[1] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[2] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[3] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[4] | LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. |
[5] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[6] | WANG Renxiang, WANG Jianrong. Development and progress of satellite photogrammetry in China [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 804-810. |
[7] | ZHANG Shuo, CHEN Liping, LI Tieying, YAN Yongzhe, DENG Xiangjin, GU Zheng, ZHENG Yanhong, MA Youqing, QI Chen, LIU Shaochuang. The positioning accuracy of the Lunar surface sampling and packaging mission of the Chang'e-5 probe [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 631-639. |
[8] | LI Guoyuan, TANG Xinming, ZHOU Xiaoqing, LU Gang, CHEN Jiyi, HUANG Genghua, GAO Xiaoming, LIU Zhao, OUYANG Sida. The method of GF-7 satellite laser altimeter on-orbit geometric calibration without field site [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 401-412. |
[9] | YAN Yongzhe, PENG Song, MA Youqing, ZHANG Shuo, QI Chen, WEN Bo, Li Hao, JIA Yang, LIU Shaochuang. A calibration method for navigation cameras' parameters of planetary detector after landing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 437-445. |
[10] | ZHAO Qingzhi, DU Zheng, YAO Wanqiang, YAO Yibin. The MERSI/FY-3A PWV correction method based on GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 159-168. |
[11] | PAN Juanxia, ZOU Xiancai. Internal calibration method of GOCE gravity gradients [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 192-200. |
[12] | MA Zhangfeng, JIANG Mi, LI Guihua, HUANG Teng. Effects of spatial network on time series InSAR phase unwrapping: take the Delaunay and Dijkstra networks for example [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 248-257. |
[13] | LIU Jihong, HU Jun, LI Zhiwei, ZHU Jianjun. Estimation of 3D coseismic deformation with InSAR: an improved SM-VCE method by window optimization [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1222-1239. |
[14] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[15] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, FENG Can. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||