[1] 施雅风, 程国栋. 冰冻圈与全球变化[J]. 中国科学院院刊, 1991, 6(4): 287-291. SHI Yafeng, CHENG Guodong. Cryosphere and global change[J]. Bulletin of Chinese Academy of Science, 1991, 6(4): 287-291. [2] HENDERSON G R, PEINGS Y, FURTADO J C, et al. Snow-atmosphere coupling in the Northern Hemisphere[J]. Nature Climate Change, 2018, 8(11): 954-963. [3] MARKS D, DOZIER J. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 2. snow cover energy balance[J]. Water Resources Research, 1992, 28(11): 3043-3054. [4] BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7066): 303-309. [5] BORMANN K J, BROWN R D, DERKSEN C, et al. Estimating snow-cover trends from space[J]. Nature Climate Change, 2018, 8(11): 924-928. [6] GAO Jingmin. Analysis and assessment of the risk of snow and freezing disaster in China[J]. International Journal of Disaster Risk Reduction, 2016, 19: 334-340. [7] 陈春艳, 李毅, 李奇航. 新疆乌鲁木齐地区积雪深度演变规律及对气候变化的响应[J]. 冰川冻土, 2015, 37(3): 587-594. CHEN Chunyan, LI Yi, LI Qihang. Snow cover depth in Vrümqi region, Xinjiang: evolution and response to climate change[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 587-594. [8] ZHAO Yi, JIANG Mi, MA Zhangfeng. Integration of SAR polarimetric features and multi-spectral data for object-based land cover classification[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 64-72. DOI: 10.11947/j.JGGS.2019.0407. [9] THAKUR P K, AGGARWAL S P, GARG P K, et al. Snow physical parameters estimation using space-based synthetic aperture radar[J]. Geocarto International, 2012, 27(3): 263-288. [10] 李震, 田邦森, 张平, 等. 合成孔径雷达积雪参数反演研究进展[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 159-169. LI Zhen, TIAN Bangsen, ZHANG Ping, et al. Overview of the snow parameters inversion from synthetic aperture radar[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020, 12(2): 159-169. [11] STORVOLD R, MALNES E, LARSEN Y, et al. SAR remote sensing of snow parameters in Norwegian areas—current status and future perspective[J]. Journal of Electromagnetic Waves and Applications, 2006, 20(13): 1751-1759. [12] SHI J, DOZIER J. Estimation of snow water equivalence using SIR-C/X-SAR. II. inferring snow depth and particle size[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2475-2488. [13] LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications[M]. Boca: CRC Press, 2009. [14] SINGH G, VENKATARAMAN G, YAMAGUCHI Y, et al. Capability assessment of fully polarimetric ALOS-PALSAR data for discriminating wet snow from other scattering types in mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1177-1196. [15] SHI Jiancheng, DOZIER J. Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 905-914. [16] SINGH G, VERMA A, KUMAR S, et al. Snowpack density retrieval using fully polarimetric TerraSAR-X data in the Himalayas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6320-6329. [17] PARRELLA G, HAJNSEK I, PAPATHANASSIOU K P. Polarimetric decomposition of L-band PolSAR backscattering over the Austfonna ice cap[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1267-1281. [18] LEINSS S, PARRELLA G, HAJNSEK I. Snow height determination by polarimetric phase differences in X-band SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3794-3810. [19] MAJUMDAR S. Snow depth and SWE estimation using spaceborne polarimetric and interferometric synthetic aperture radar[D]. Ernshard: University of Twente, 2019. [20] PATIL A, SINGH G, RVDIGER C. Retrieval of snow depth and snow water equivalent using dual polarization SAR data[J]. Remote Sensing, 2020, 12(7): 1183. [21] SINGH G, VENKATARAMAN G. Snow density estimation using polarimetric ASAR data[C]//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE, 2009. [22] 胡汝骥, 魏文寿. 试论中国的雪害区划[J]. 冰川冻土, 1987, 9(S1): 1-12. HU Ruji, WEI Wenshou. On the zoning of snow damage in China[J]. Journal of Glaciology and Geocryology, 1987, 9(S1): 1-12. [23] 沈永平, 王国亚, 苏宏超, 等. 新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J]. 冰川冻土, 2007, 29(6): 845-854. SHEN Yongping, WANG Guoya,SU Hongchao, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan River basin with snow-dominated of the Altay Mountains Region, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 845-854. [24] 侯小刚. 基于多源数据的阿勒泰地区积雪深度研究[D]. 乌鲁木齐: 新疆师范大学, 2013. HOU Xiaogang. Study of snow depth based on multi-source data about Altay area[D]. Vrümqi: Xinjiang Normal University, 2013. [25] LEINSS S. Depth, anisotropy, and water equivalent of snow estimated by radar interferometry and polarimetry[D]. Zurich: ETH Zurich, 2015. [26] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269-277. DOI: 10.11947/j.AGCS.2017.20170049. ZHANG Qinjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269-277. DOI: 10.11947/j.AGCS.2017.20170049. [27] SIHVOLA A, TIURI M. Snow fork for field determination of the density and wetness profiles of a snow pack[J]. IEEE Transactions on Geoscience and Remote Sensing,1986, GE-24(5): 717-721. [28] 郑雷. 北疆地区积雪时空变化特征[D]. 兰州: 兰州大学, 2015. ZHENG Lei. The temporal-spatial distribution of snow properties in North Xinjiang[D]. Lanzhou: Lanzhou University, 2015. [29] ULABY F T, STILES W H. Microwave response of snow[J]. Advances in Space Research, 1981, 1(10): 131-149. [30] SCHLEEF S, LÖWE H. X-ray microtomography analysis of isothermal densification of new snow under external mechanical stress[J]. Journal of Glaciology, 2013, 59(214): 233-243. [31] RICHE F, MONTAGNAT M, SCHNEEBELI M. Evolution of crystal orientation in snow during temperature gradient metamorphism[J]. Journal of Glaciology, 2013, 59(213): 47-55. [32] PINZER B R, SCHNEEBELI M, KAEMPFER T U. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography[J]. The Cryosphere, 2012, 6(5): 1141-1155. [33] ALLEY R B, BOLZAN J F, WHILLANS I M. Polar firn densification and grain growth[J]. Annals of Glaciology, 1982, 3: 7-11. [34] HALLIKAINEN M T, ULABY F T, VAN DEVENTER T E V. Extinction behavior of dry snow in the 18-to 90-GHz range[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25(6): 737-745. [35] WEST R, TSANG L, WINEBRENNER D P. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(2): 426-437. [36] PARRELLA G, HAJNSEK I, PAPATHANASSIOU K. On the interpretation of L- and P-band PolSAR signatures of polythermal glaciers[C]//Proceedings of ESA PolInSAR Workshop. Frascati, Italy: ESA Communications, 2013: 713. [37] LEINSS S, LOWE H, PROKSCH M, et al. Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series[J]. The Cryosphere, 2016, 10(4): 1771-1797. [38] SIHVOLA A. Mixing rules with complex dielectric coefficients[J]. Subsurface Sensing Technologies and Applications, 2000, 1(4): 393-415. [39] MASSONNET D, FEIG K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500. |