[1] WANG Bo, Ling Juan-miao. A Constrained LAMBDA Method for GPS Attitude Determination [J]. GPS Solut 2009, 13(2):97–107. [2] QIN Hong-Lei, Chen Wan-Tong. Performance Analysis and Improved Method for Single Epoch, Single Frequency Attitude Determination Using GPS [J]. Jiefangjun Ligong Daxue Xuebao, October 2011, 12(5):431-435. [3] COIAS, Jo?o. Attitude Determination Using the Ambiguity Filter with Single-frequency L1 GPS Receivers[C]. 2012 International Conference on Localization and GNSS, ICL-GNSS 2012: 6253133. [4] P J G Teunissen.Least-squares Estimation of the Integer GPS Ambiguities[C], General Meeting of the International Association of Geodesy, Beijing, China, August 1993. [5] P J G Teunissen. A New Method for Fast Carrier Phase Ambiguity Estimation.Proc. of IEEE Position [J], Location and Navigation Symposium PLAN’94, Las Vegas, NV, USA, April 11-15, 1994:562-573. [6] GABRILGE Giorgi, P J G Teunissen. Testing a New Multivariate GNSS Carrier Phase Attitude Determination Method for Remote Sensing Platforms [J], Advances in Space Research 2010(46):118-129. [7] C Park, P J G Teunissen. A Baseline Constrained LAMBDA Method for an Integer Ambiguity Resolution of GNSS Attitude Determination System [J].IEICE Transaction on Communication, vol.E83-B, NO.6, June 2008:587-594. [8] BUIST Peter J. Multivariate Bootstrapped Relative Positioning of Spacecraft Using GPS L1/Galileo E1 Signals [J]. Advances in Space Research, March 1, 2011, 47(5):770-785. [9] P J G Teunissen. Integer Least-squares Theory for the GNSS Compass [J].J Geod, 2010(84):433-447. [10] LIU Zhi-jian. Algorithm of a Real-time Attitude System Using Non-dedicated GPS Receivers [J]. Acta Geodaetica et Cartographica Sinica, 2005,34(3):213-217.(刘志俭.一种基于非专用接收机的GPS实时定姿算法[J].测绘学报,2005,34(3):213-217). [11] PENG Xiao-gang. A Real-time Integer Ambiguity Resolution Algorithm for GPS Attitude Determination [J]. Bulletin of Surveying And Mapping,2011,(5):16-19.(彭晓刚.一种实时GPS 姿态测量中的整周模糊度的解算方法[J].测绘通报,2011,(5):16-19) [12] LIU Ning. An Algorithm for Rapid Integer Ambiguity Resolution in Single Frequency GPS Kinemical Positioning [J]. Acta Geodaetica et Cartographica Sinica, 2013,42(2):211-217.(刘宁.单频GPS动态定位中整周模糊度的一种快速解算方法[J].测绘学报, 2013,42(2):211-217). [13] PAUL de Jonge, Christian Tiberius. The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects [M]. Publications of the Delft Geodetic Computing Centre, August 1996. [14] CHANG Xiao-wen, PAIGE C C, YIN L.Code and Carrier Phase Based Short Baseline GPS Positioning: Computational Aspects [J].GPS Solutions, 2004, 7(4):230-240. [15] Chang X-W, Paige CC.An Orthogonal Transformation Algorithm for GPS Positioning[J], SIAM J Sci Comp 4,2003:1710–1732. [16] Remondi BW (1984) Using the Global Positioning System Phase Observable for Relative Geodesy [D]: modeling, processing and results, Ph.D. Thesis. The University of Texas at Austin, 1984:124-132. [17] P J G Teunissen.The LAMBDA Method for the GNSS Compass [J]. Artificial Satellites, 2006, 41(3):89-103. [18] CHANSIK Park, Peter J.G.Teunissen.Integer Least Squares with Quadratic Equality Constrain and Its Application to GNSS Attitude Determination Systems. International Journal of Control [J], Automation, and Systems, 2009, 7(4):566-576. [19] GENE H.Golub, Charles F.Van Loan. Matrix Computations [M].The Johns Hopkins University Press, 1996:206-222. [20] George P. Gerdan.A Comparison of Four Methods of Weighting Double Difference Pseudo range Measurements[J], Australian Surveyor,1995,40(4):60-66. [21] Andreas Wieser, Fritz K.Brunner. An Extended Weight Model for GPS Phase Observations [J], Earth Planets Space, 2000(52):777-782. [22] ELLIOTT D.Kaplan and Christopher J.Hegarty, Understanding GPS Principles And Application, Second Edition[M].Kou Yan Hong translation, Publishing House of Electronic Industry Press, 2007:134-140(GPS 原理与应用(第二版)[M],电子工业出版社,2007:134-140). |