Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (9): 1073-1087.doi: 10.11947/j.AGCS.2019.20190176
• Review • Next Articles
ZHANG Xiaohong1,2, MA Fujian1,2
Received:2019-05-07
Revised:2019-06-06
Online:2019-09-20
Published:2019-09-25
Supported by:CLC Number:
ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087.
| [1] 刘经南, 陈俊勇, 张燕平, 等. 广域差分GPS原理和方法[M]. 北京:测绘出版社, 1999. LIU Jingnan, CHEN Junyong, ZHANG Yanping, et al. Theory and method of wild area differential GPS[M]. Beijing:Surveying and Mapping Press, 1999. [2] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1):3-8. NING Jinsheng, YAO Yibin, ZHANG Xiaohong. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning, 2013, 1(1):3-8. [3] LIU J. BeiDou augmentation and its future[C]//Proceedings of the International GNSS Service Workshop. Wuhan:[s.n.], 2018. [4] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [5] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [6] ENGE P, WALTER T, PULLEN S, et al. Wide area augmentation of the global positioning system[J]. Proceedings of the IEEE, 1996, 84(8):1063-1088. [7] BENEDICTO J, MICHEL P, VENTURA-TRAVESET J. EGNOS:project status overview[J]. Air & Space Europe, 1999, 1(1):58-64. [8] BRAFF R. Description of the FAA's local area augmentation system (LAAS)[J]. Navigation, 1997, 44(4):411-423. [9] DIXON K. StarFireTM:a global SBAS for sub-decimeter precise point positioning[C]//Proceedings of the 19th International Technical Meeting of the Satellite Division. Fort Worth, Texas:NASA, 2006:2286-2296. [10] PFLUGMACHER A, HEISTER H, HEUNECKE O. Global investigations of the satellite-based Fugro OmniSTAR HP service[J]. Journal of Applied Geodesy, 2009, 3(4):193-212. [11] 李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉:武汉大学, 2013. LI Xingxing. Rapid ambiguity resolution in GNSS precise point positioning[D]. Wuhan:Wuhan University, 2013. [12] HAUGG S, RICHERT W, LEOSON R. EGNOS trial on North Atlantic and Arctic Ocean[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001). Salt Lake City, UT:ION, 2001. [13] OVERLAND J E, WANG M. When will the summer Arctic be nearly sea ice free?[J]. Geophysical Research Letters, 2013, 40(10):2097-2101. [14] SUNDLISAETER T, REID T, JOHNSON C, et al. GNSS and SBAS system of systems:considerations for applications in the Arctic[C]//Proceedings of the 63rd International Astronautical Congress. Naples, Italy:SSRN, 2012. [15] REID T G R, WALTER T, ENGE P K, et al. Orbital representations for the next generation of satellite-based augmentation systems[J]. GPS Solutions, 2016, 20(4):737-750. [16] RABINOWITZ M, PARKINSON B W, COHEN C E, et al. A system using LEO telecommunication satellites for rapid acquisition of integer cycle ambiguities[C]//Proceedings of 1998 IEEE Position Location and Navigation Symposium. Palm Springs, CA:IEEE, 1998:137-145. [17] REID T G, NEISH A M, WALTER T F, et al. Leveraging commercial broadband LEO constellations for navigating[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2016). Portland, Oregon:ION, 2016:2300-2314. [18] GE Haibo, LI Bofeng, GE Maorong, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)[J]. Remote Sensing, 2018, 10(7):984. [19] LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5):749-764. [20] FORSSELL B. Radionavigation systems[M]. London:Prentice Hall International, 1991. [21] STANSELL JR T A. The navy navigation satellite system:description and status[J]. Navigation, 1968, 15(3):229-243. [22] PARKINSON B W, STANSELL T, BEARD R, et al. A history of satellite navigation[J]. Navigation, 1995, 42(1):109-164. [23] BONNOR N. A brief history of global navigation satellite systems[J]. The Journal of Navigation, 2012, 65(1):1-14. [24] MCCASKILL T B, BUISSON J A. NTS-1(TIMATION-Ⅲ) quartz and rubidium oscillator frequency stability results[C]//Proceedings of the 29th Annual Symposium on Frequency Control. Atlantic City, NJ:IEEE, 1975:425-435. [25] GOLD R. Optimal binary sequences for spread spectrum multiplexing (Corresp.)[J]. IEEE Transactions on Information Theory, 1967, 13(4):619-621. [26] JOERGER M, GRATTON L, PERVAN B, et al. Analysis of iridium-augmented GPS for floating carrier phase positioning[J]. Navigation, 2010, 57(2):137-160. [27] PRATT J, AXELRAD P, LARSON K M, et al. Satellite clock bias estimation for iGPS[J]. GPS Solutions, 2013, 17(3):381-389. [28] GEBHARDT C. Iridium boss reflects as final NEXT satellite constellation launches[EB/OL]. (2019-01-11). https://www.kc4mcq.us/?p=15784. [29] DE SELDING P B. Virgin, Qualcomm invest in OneWeb satellite internet venture[EB/OL]. (2015-01-15). http://spacenews.com/virgin-qualcomm-invest-in-global-satellite-internet-plan/. [30] DE SELDING P B. SpaceX to build 4,000 broadband satellites in Seattle[EB/OL]. (2015-01-19). http://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/. [31] NYIRADY A. SpaceX receives FCC approval to launch 7518 Starlink satellites[EB/OL]. (2018-11-16). http://www.satellitetoday.com/broadband/2018/11/16/spacex-receives-fcc-approval-to-deploy-7518-satellites/. [32] DE SELDING P B. Boeing proposes big satellite constellations in V-and C-bands[EB/OL]. (2016-06-23). http://spacenews.com/boeing-proposes-big-satellite-constellations-in-v-and-c-bands/. [33] MAGAN V. Samsung exec envisions LEO constellation for satellite internet connectivity[EB/OL]. (2015-08-18). https://www.satellitetoday.com/telecom/2015/08/18/samsung-exec-envisions-leo-constellation-for-satellite-internet-connectivity/. [34] 蒙艳松, 边朗, 王瑛, 等. 基于"鸿雁"星座的全球导航增强系统[J]. 国际太空, 2018(10):20-27. MENG Yansong, BIAN Lang, WANG Ying, et al. Global navigation augmentation system based on Hongyan satellite constellation[J]. Space International, 2018(10):20-27. [35] CNAGA. CASIC plans to launch 156 small satellites for the Hongyun Program[EB/OL].[2018-03-03]. http://en.chinabeidou.gov.cn/c/393.html. [36] DIETRICH F J, METZEN P, MONTE P. The Globalstar cellular satellite system[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6):935-942. [37] DE SELDING P B. LeoSat corporate broadband constellation sees GEO satellite operators as partners[EB/OL]. (2016-06-14). http://spacenews.com/leosat-corporate-broadbandconstellation-sees-geo-satellite-operators-as-partners/. [38] DE SELDING P B. Telesat:LEO gives more user bandwidth than GEO HTS[EB/OL]. (2017-05-08). http://www.spaceintelreport.com/telesat-leo-gives-more-user-bandwidth-than-geo-hts/. [39] HENRY C. Kepler communications opens launch bids for Gen-1 LEO constellation[EB/OL]. (2018-08-29). https://spacenews.com/kepler-communications-opens-launch-bids-for-gen-1-leo-constellation/. [40] VAN WAGENEN J. ELSE CEO:2017 big year for planned 64-satellite constellation[EB/OL]. (2016-12-16). https://www.satellitetoday.com/innovation/2016/12/16/else-ceo-2017-big-year-planned-64-satellite-constellation/. [41] DVORYANINOV I. Yaliny's protocol for low Earth orbit satellites[C]//Proceedings of 2015 IEEE East-West Design & Test Symposium. Batumi, Georgia:IEEE, 2015:1-3. [42] FORRESTER C. Astrome planning giant broadband constellation[EB/OL]. (2016-10-26). https://advanced-television.com/2016/10/26/astrome-planning-giant-broadband-constellation/. [43] JONES A. Chinese rocket maker OneSpace secures $44 m in funding; Expace prepares for commercial launch[EB/OL]. (2018-08-14). https://spacenews.com/chinese-rocket-maker-onespace-secures-44m-in-funding-expace-prepare-for-commercial-launch/. [44] WANG Lei, CHEN Ruizhi, LI Deren, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite[J]. Sensors, 2018, 18(11):3919. [45] 王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12):2191-2196. WANG Lei, CHEN Ruizhi, LI Deren, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2191-2196. [46] VAN ALLEN J A, FRANK L A. Radiation around the Earth to a radial distance of 107 400 km[J]. Nature, 1959, 183(4659):430-434. [47] GRIMWOOD T. UCS satellite database[DB/OL]. (2018-11-30). http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database. [48] ENGE P, FERRELL B, BENNETT J, et al. Orbital diversity for satellite navigation[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville, TN:ION, 2012:3834-3846. [49] 杨波. 低轨卫星增强导航技术研究[D]. 成都:电子科技大学, 2017. YANG Bo. Research on enhanced navigation technologies based on low Earth orbit satellite[D]. Chengdu:University of Electronic Science and Technology of China, 2017. [50] MA Fujian, ZHANG Xiaohong, LI Xingxing, et al. LEO constellation augmented multi-GNSS precise positioning:heterogeneous constellation design and frequency selection[C]//Proceedings of the International GNSS Service Workshop 2018. Wuhan, China:IGS, 2018. [51] 崔蕾, 杨慧杰. 低轨卫星多波束天线波束设计方法研究[J]. 微波学报, 2012, 28(S2):76-79. CUI Lei, YANG Huijie. Study of multi-beam antenna beam design method for low Earth orbit satellite[J]. Journal of Microwaves, 2012, 28(S2):76-79. [52] SIMON M K, OMURA J K, SCHOLTZ R A, et al. Spread spectrum communications handbook[M]. New York:McGraw-Hill, 1994:751-900. [53] REID T G R. Orbital diversity for global navigation satellite systems[D]. California:Stanford University, 2017. [54] LUTHCKE S B, ZELENSKY N P, ROWLANDS D D, et al. The 1-centimeter orbit:Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data special issue:Jason-1 calibration/validation[J]. Marine Geodesy, 2003, 26(3-4):399-421. [55] XIE Xin, GENG Tao, ZHAO Qile, et al. Design and validation of broadcast ephemeris for low Earth orbit satellites[J]. GPS Solutions, 2018, 22(2):54. [56] 方善传, 杜兰, 高云鹏, 等. LEO卫星轨道根数型星历参数与接口设计[J]. 测绘学报, 2019, 48(2):198-206. DOI:10.11947/j.AGCS.2019.20170701. FANG Shanchuan, DU Lan, GAO Yunpeng, et al. Orbital elements ephemerides and interfaces design of LEO satellites[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):198-206. DOI:10.11947/j.AGCS.2019.20170701. [57] 冯来平, 毛悦, 宋小勇, 等. 低轨卫星与星间链路增强的北斗卫星联合定轨精度分析[J]. 测绘学报, 2016, 45(S2):109-115. DOI:10.11947/j.AGCS.2016.F032. FENG Laiping, MAO Yue, SONG Xiaoyong, et al. Analysis of the accuracy of BeiDou combined orbit determination enhanced by LEO and ISL[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2):109-115. DOI:10.11947/j.AGCS.2016.F032. [58] ZHU S, REIGBER C, KÖNIG R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of Geodesy, 2004, 78(1-2):103-108. [59] 耿江辉, 施闯, 赵齐乐, 等. 联合地面和星载数据精密确定GPS卫星轨道[J]. 武汉大学学报(信息科学版), 2007, 32(10):906-909. GENG Jianghui, SHI Chuang, ZHAO Qile, et al. GPS precision orbit determination from combined ground and space-borne data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10):906-909. [60] 沈大海, 蒙艳松, 边朗, 等. 基于低轨通信星座的全球导航增强系统[J]. 太赫兹科学与电子信息学报, 2019, 17(2):209-215. SHEN Dahai, MENG Yansong, BIAN Lang, et al. A global navigation augmentation system based on LEO communication constellation[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(2):209-215. [61] LI Bofeng, GE Haibo, GE Maorong, et al. LEO enhanced global navigation satellite system (LeGNSS) forReal-time precise positioning services[J]. Advances in Space Research, 2019, 63(1):73-93. [62] TIAN Shiwei, DAI Weiheng, LIU Renfu, et al. System using hybrid LEO-GPS satellites for rapid resolution of integer cycle ambiguities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):1774-1785. [63] LI Xingxing, LÜ Hongbo, MA Fujian, et al. GNSS RTK positioning augmented with large LEO constellation[J]. Remote Sensing, 2019, 11(3):228. [64] KE Mingming, LÜ Jing, CHANG Jiang, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]//Proceedings of the 7th International Conference on Wireless Communications & Signal. Nanjing, China:IEEE, 2015:1-5. [65] SU Mudan, SU Xing, ZHAO Qile, et al. BeiDou augmented navigation from low Earth orbit satellites[J]. Sensors, 2019, 19(1):198. [66] LI Xin, LI Xingxing, MA Fujian, et al. Improved PPP ambiguity resolution with the assistance of multiple LEO constellations and signals[J]. Remote Sensing, 2019, 11(4):408. [67] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. [68] 吴晓莉, 韩春好, 平劲松. GEO卫星区域电离层监测分析[J]. 测绘学报, 2013, 42(1):13-18. WU Xiaoli, HAN Chunhao, PING Jinsong. Monitoring and analysis of regional ionosphere with GEO satellite observations[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):13-18. [69] ZHANG Xiaohong, TANG Long. Daily global plasmaspheric maps derived from COSMIC GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6040-6046. [70] LAWRENCE D, COBB H S, GUTT G, et al. Innovation:navigation from LEO[EB/OL]. (2017-06-30). http://gpsworld.com/innovation-navigation-from-leo/. [71] JOERGER M, NEALE J, PERVAN B. Iridium/GPS carrier phase positioning and fault detection over wide areas[C]//Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, GA:ION, 2009:1371-1385. [72] 田世伟, 李广侠, 常江, 等. 基于铱星增强的GPS系统RAIM性能[J]. 解放军理工大学学报(自然科学版), 2013, 14(3):237-241. TIAN Shiwei, LI Guangxia, CHANG Jiang, et al. Receiver autonomous integrity monitoring in iridium-augmented GPS[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(3):237-241. [73] 姚铮, 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京:电子工业出版社, 2016. YAO Zheng, LU Mingquan. Design principles and implementation techniques of the signals for the new-generation satellite navigation systems[M]. Beijing:Publishing House of Electronics Industry, 2016. [74] KELSO T S. Analysis of the Iridium 33-cosmos 2251 collision[C]//Proceedings of 2009 AMOS Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii:[s.n], 2009:1099-1112. [75] JOHNSON N L. Space debris mitigation guidelines[C]//Symposium on Small Satellite Programmes for Sustainable Development. Graz, Austria:NASA, 2011. [76] VIRGILI B B, DOLADO J C, LEWIS H G, et al. Risk to space sustainability from large constellations of satellites[J]. Acta Astronautica, 2016(126):154-162. [77] 程鹏飞, 景宾, 赵静. 伽利略系统及其地面段的设计[J]. 海洋测绘, 2003, 23(4):49-53. CHENG Pengfei, JING Bin, ZHAO Jing. Galileo system and design of the ground segment[J]. Hydrographic Surveying and Charting, 2003, 23(4):49-53. [78] WANG Lei, CHEN Ruizhi, XU Beizhen, et al. The challenges of LEO based navigation augmentation system-lessons learned from Luojia-1A satellite[M]//SUN Jiadong, YANG Changfeng, YANG Yuanxi. China Satellite Navigation Conference (CSNC) 2019 Proceedings Volume Ⅱ. Singapore:Springer, 2019:298-310. [79] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11):1501-1505. LI Deren, SHEN Xin, LI Dilong, et al. On civil-military integrated space-based real-time information service system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1501-1505. |
| [1] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [2] | Yangyi CHEN, Kai ZHENG, Xiaohong ZHANG, Mingkui WU, Pengxu WANG, Wenju FU, Kezhong LIU. GPS/Galileo/BDS overlapping frequencies multipath error analysis and modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1427-1438. |
| [3] | Jianzhang LI, Haowen YAN, Weifang YANG, Xiaoning SU. GNSS pseudo trigonometric leveling method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1170-1177. |
| [4] | Qingzhi ZHAO, Lulu CHANG, Yibin YAO, Haojie LI. A method for constructing a hydrological drought index integrated with GNSS and meteorological data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1192-1205. |
| [5] | Qianxin WANG, Chao HU, Tong CHENG. A method for satellite ultra-rapid orbit and clock offset estimation based on the prior information of the GNSS clock parameters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 982-994. |
| [6] | Yang SHEN, Guangyun LI, Mingjian CHEN, Linyang LI, Xingyu SHI, Wei CAI, Weifeng HAO. Assessment of GNSS ionosphere models based on FY-3 TEC in polar regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 995-1008. |
| [7] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [8] | Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735. |
| [9] | Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421. |
| [10] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [11] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| [12] | Jixing ZHU, Shuqiang XUE, Baojin LI, Zhen XIAO, Kaiming WANG. GNSS-acoustic inversion of double-exponential temperature profile [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 286-296. |
| [13] | Bofeng LI, Long CHEN, Leitong YUAN. A high-precision deformation monitoring method with GNSS multi-baseline solutions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2116-2128. |
| [14] | Tao GENG, Qiang LI, Lingyue CHENG, Jingnan LIU. The correction method of relativistic effects for GNSS and LEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2129-2141. |
| [15] | Yupeng GU, Wanke LIU, Xiaohong ZHANG, Jie HU, Shujie HU, Weihao LEI, Kai ZHENG. Neural network-based GNSS stochastic model generation method by fisheye images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2206-2218. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||