Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (9): 1073-1087.doi: 10.11947/j.AGCS.2019.20190176
• Review • Next Articles
ZHANG Xiaohong1,2, MA Fujian1,2
Received:
2019-05-07
Revised:
2019-06-06
Online:
2019-09-20
Published:
2019-09-25
Supported by:
CLC Number:
ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087.
[1] 刘经南, 陈俊勇, 张燕平, 等. 广域差分GPS原理和方法[M]. 北京:测绘出版社, 1999. LIU Jingnan, CHEN Junyong, ZHANG Yanping, et al. Theory and method of wild area differential GPS[M]. Beijing:Surveying and Mapping Press, 1999. [2] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1):3-8. NING Jinsheng, YAO Yibin, ZHANG Xiaohong. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning, 2013, 1(1):3-8. [3] LIU J. BeiDou augmentation and its future[C]//Proceedings of the International GNSS Service Workshop. Wuhan:[s.n.], 2018. [4] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [5] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [6] ENGE P, WALTER T, PULLEN S, et al. Wide area augmentation of the global positioning system[J]. Proceedings of the IEEE, 1996, 84(8):1063-1088. [7] BENEDICTO J, MICHEL P, VENTURA-TRAVESET J. EGNOS:project status overview[J]. Air & Space Europe, 1999, 1(1):58-64. [8] BRAFF R. Description of the FAA's local area augmentation system (LAAS)[J]. Navigation, 1997, 44(4):411-423. [9] DIXON K. StarFireTM:a global SBAS for sub-decimeter precise point positioning[C]//Proceedings of the 19th International Technical Meeting of the Satellite Division. Fort Worth, Texas:NASA, 2006:2286-2296. [10] PFLUGMACHER A, HEISTER H, HEUNECKE O. Global investigations of the satellite-based Fugro OmniSTAR HP service[J]. Journal of Applied Geodesy, 2009, 3(4):193-212. [11] 李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉:武汉大学, 2013. LI Xingxing. Rapid ambiguity resolution in GNSS precise point positioning[D]. Wuhan:Wuhan University, 2013. [12] HAUGG S, RICHERT W, LEOSON R. EGNOS trial on North Atlantic and Arctic Ocean[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001). Salt Lake City, UT:ION, 2001. [13] OVERLAND J E, WANG M. When will the summer Arctic be nearly sea ice free?[J]. Geophysical Research Letters, 2013, 40(10):2097-2101. [14] SUNDLISAETER T, REID T, JOHNSON C, et al. GNSS and SBAS system of systems:considerations for applications in the Arctic[C]//Proceedings of the 63rd International Astronautical Congress. Naples, Italy:SSRN, 2012. [15] REID T G R, WALTER T, ENGE P K, et al. Orbital representations for the next generation of satellite-based augmentation systems[J]. GPS Solutions, 2016, 20(4):737-750. [16] RABINOWITZ M, PARKINSON B W, COHEN C E, et al. A system using LEO telecommunication satellites for rapid acquisition of integer cycle ambiguities[C]//Proceedings of 1998 IEEE Position Location and Navigation Symposium. Palm Springs, CA:IEEE, 1998:137-145. [17] REID T G, NEISH A M, WALTER T F, et al. Leveraging commercial broadband LEO constellations for navigating[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2016). Portland, Oregon:ION, 2016:2300-2314. [18] GE Haibo, LI Bofeng, GE Maorong, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)[J]. Remote Sensing, 2018, 10(7):984. [19] LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5):749-764. [20] FORSSELL B. Radionavigation systems[M]. London:Prentice Hall International, 1991. [21] STANSELL JR T A. The navy navigation satellite system:description and status[J]. Navigation, 1968, 15(3):229-243. [22] PARKINSON B W, STANSELL T, BEARD R, et al. A history of satellite navigation[J]. Navigation, 1995, 42(1):109-164. [23] BONNOR N. A brief history of global navigation satellite systems[J]. The Journal of Navigation, 2012, 65(1):1-14. [24] MCCASKILL T B, BUISSON J A. NTS-1(TIMATION-Ⅲ) quartz and rubidium oscillator frequency stability results[C]//Proceedings of the 29th Annual Symposium on Frequency Control. Atlantic City, NJ:IEEE, 1975:425-435. [25] GOLD R. Optimal binary sequences for spread spectrum multiplexing (Corresp.)[J]. IEEE Transactions on Information Theory, 1967, 13(4):619-621. [26] JOERGER M, GRATTON L, PERVAN B, et al. Analysis of iridium-augmented GPS for floating carrier phase positioning[J]. Navigation, 2010, 57(2):137-160. [27] PRATT J, AXELRAD P, LARSON K M, et al. Satellite clock bias estimation for iGPS[J]. GPS Solutions, 2013, 17(3):381-389. [28] GEBHARDT C. Iridium boss reflects as final NEXT satellite constellation launches[EB/OL]. (2019-01-11). https://www.kc4mcq.us/?p=15784. [29] DE SELDING P B. Virgin, Qualcomm invest in OneWeb satellite internet venture[EB/OL]. (2015-01-15). http://spacenews.com/virgin-qualcomm-invest-in-global-satellite-internet-plan/. [30] DE SELDING P B. SpaceX to build 4,000 broadband satellites in Seattle[EB/OL]. (2015-01-19). http://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/. [31] NYIRADY A. SpaceX receives FCC approval to launch 7518 Starlink satellites[EB/OL]. (2018-11-16). http://www.satellitetoday.com/broadband/2018/11/16/spacex-receives-fcc-approval-to-deploy-7518-satellites/. [32] DE SELDING P B. Boeing proposes big satellite constellations in V-and C-bands[EB/OL]. (2016-06-23). http://spacenews.com/boeing-proposes-big-satellite-constellations-in-v-and-c-bands/. [33] MAGAN V. Samsung exec envisions LEO constellation for satellite internet connectivity[EB/OL]. (2015-08-18). https://www.satellitetoday.com/telecom/2015/08/18/samsung-exec-envisions-leo-constellation-for-satellite-internet-connectivity/. [34] 蒙艳松, 边朗, 王瑛, 等. 基于"鸿雁"星座的全球导航增强系统[J]. 国际太空, 2018(10):20-27. MENG Yansong, BIAN Lang, WANG Ying, et al. Global navigation augmentation system based on Hongyan satellite constellation[J]. Space International, 2018(10):20-27. [35] CNAGA. CASIC plans to launch 156 small satellites for the Hongyun Program[EB/OL].[2018-03-03]. http://en.chinabeidou.gov.cn/c/393.html. [36] DIETRICH F J, METZEN P, MONTE P. The Globalstar cellular satellite system[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6):935-942. [37] DE SELDING P B. LeoSat corporate broadband constellation sees GEO satellite operators as partners[EB/OL]. (2016-06-14). http://spacenews.com/leosat-corporate-broadbandconstellation-sees-geo-satellite-operators-as-partners/. [38] DE SELDING P B. Telesat:LEO gives more user bandwidth than GEO HTS[EB/OL]. (2017-05-08). http://www.spaceintelreport.com/telesat-leo-gives-more-user-bandwidth-than-geo-hts/. [39] HENRY C. Kepler communications opens launch bids for Gen-1 LEO constellation[EB/OL]. (2018-08-29). https://spacenews.com/kepler-communications-opens-launch-bids-for-gen-1-leo-constellation/. [40] VAN WAGENEN J. ELSE CEO:2017 big year for planned 64-satellite constellation[EB/OL]. (2016-12-16). https://www.satellitetoday.com/innovation/2016/12/16/else-ceo-2017-big-year-planned-64-satellite-constellation/. [41] DVORYANINOV I. Yaliny's protocol for low Earth orbit satellites[C]//Proceedings of 2015 IEEE East-West Design & Test Symposium. Batumi, Georgia:IEEE, 2015:1-3. [42] FORRESTER C. Astrome planning giant broadband constellation[EB/OL]. (2016-10-26). https://advanced-television.com/2016/10/26/astrome-planning-giant-broadband-constellation/. [43] JONES A. Chinese rocket maker OneSpace secures $44 m in funding; Expace prepares for commercial launch[EB/OL]. (2018-08-14). https://spacenews.com/chinese-rocket-maker-onespace-secures-44m-in-funding-expace-prepare-for-commercial-launch/. [44] WANG Lei, CHEN Ruizhi, LI Deren, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite[J]. Sensors, 2018, 18(11):3919. [45] 王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12):2191-2196. WANG Lei, CHEN Ruizhi, LI Deren, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2191-2196. [46] VAN ALLEN J A, FRANK L A. Radiation around the Earth to a radial distance of 107 400 km[J]. Nature, 1959, 183(4659):430-434. [47] GRIMWOOD T. UCS satellite database[DB/OL]. (2018-11-30). http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database. [48] ENGE P, FERRELL B, BENNETT J, et al. Orbital diversity for satellite navigation[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville, TN:ION, 2012:3834-3846. [49] 杨波. 低轨卫星增强导航技术研究[D]. 成都:电子科技大学, 2017. YANG Bo. Research on enhanced navigation technologies based on low Earth orbit satellite[D]. Chengdu:University of Electronic Science and Technology of China, 2017. [50] MA Fujian, ZHANG Xiaohong, LI Xingxing, et al. LEO constellation augmented multi-GNSS precise positioning:heterogeneous constellation design and frequency selection[C]//Proceedings of the International GNSS Service Workshop 2018. Wuhan, China:IGS, 2018. [51] 崔蕾, 杨慧杰. 低轨卫星多波束天线波束设计方法研究[J]. 微波学报, 2012, 28(S2):76-79. CUI Lei, YANG Huijie. Study of multi-beam antenna beam design method for low Earth orbit satellite[J]. Journal of Microwaves, 2012, 28(S2):76-79. [52] SIMON M K, OMURA J K, SCHOLTZ R A, et al. Spread spectrum communications handbook[M]. New York:McGraw-Hill, 1994:751-900. [53] REID T G R. Orbital diversity for global navigation satellite systems[D]. California:Stanford University, 2017. [54] LUTHCKE S B, ZELENSKY N P, ROWLANDS D D, et al. The 1-centimeter orbit:Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data special issue:Jason-1 calibration/validation[J]. Marine Geodesy, 2003, 26(3-4):399-421. [55] XIE Xin, GENG Tao, ZHAO Qile, et al. Design and validation of broadcast ephemeris for low Earth orbit satellites[J]. GPS Solutions, 2018, 22(2):54. [56] 方善传, 杜兰, 高云鹏, 等. LEO卫星轨道根数型星历参数与接口设计[J]. 测绘学报, 2019, 48(2):198-206. DOI:10.11947/j.AGCS.2019.20170701. FANG Shanchuan, DU Lan, GAO Yunpeng, et al. Orbital elements ephemerides and interfaces design of LEO satellites[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):198-206. DOI:10.11947/j.AGCS.2019.20170701. [57] 冯来平, 毛悦, 宋小勇, 等. 低轨卫星与星间链路增强的北斗卫星联合定轨精度分析[J]. 测绘学报, 2016, 45(S2):109-115. DOI:10.11947/j.AGCS.2016.F032. FENG Laiping, MAO Yue, SONG Xiaoyong, et al. Analysis of the accuracy of BeiDou combined orbit determination enhanced by LEO and ISL[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2):109-115. DOI:10.11947/j.AGCS.2016.F032. [58] ZHU S, REIGBER C, KÖNIG R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of Geodesy, 2004, 78(1-2):103-108. [59] 耿江辉, 施闯, 赵齐乐, 等. 联合地面和星载数据精密确定GPS卫星轨道[J]. 武汉大学学报(信息科学版), 2007, 32(10):906-909. GENG Jianghui, SHI Chuang, ZHAO Qile, et al. GPS precision orbit determination from combined ground and space-borne data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10):906-909. [60] 沈大海, 蒙艳松, 边朗, 等. 基于低轨通信星座的全球导航增强系统[J]. 太赫兹科学与电子信息学报, 2019, 17(2):209-215. SHEN Dahai, MENG Yansong, BIAN Lang, et al. A global navigation augmentation system based on LEO communication constellation[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(2):209-215. [61] LI Bofeng, GE Haibo, GE Maorong, et al. LEO enhanced global navigation satellite system (LeGNSS) forReal-time precise positioning services[J]. Advances in Space Research, 2019, 63(1):73-93. [62] TIAN Shiwei, DAI Weiheng, LIU Renfu, et al. System using hybrid LEO-GPS satellites for rapid resolution of integer cycle ambiguities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):1774-1785. [63] LI Xingxing, LÜ Hongbo, MA Fujian, et al. GNSS RTK positioning augmented with large LEO constellation[J]. Remote Sensing, 2019, 11(3):228. [64] KE Mingming, LÜ Jing, CHANG Jiang, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]//Proceedings of the 7th International Conference on Wireless Communications & Signal. Nanjing, China:IEEE, 2015:1-5. [65] SU Mudan, SU Xing, ZHAO Qile, et al. BeiDou augmented navigation from low Earth orbit satellites[J]. Sensors, 2019, 19(1):198. [66] LI Xin, LI Xingxing, MA Fujian, et al. Improved PPP ambiguity resolution with the assistance of multiple LEO constellations and signals[J]. Remote Sensing, 2019, 11(4):408. [67] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. [68] 吴晓莉, 韩春好, 平劲松. GEO卫星区域电离层监测分析[J]. 测绘学报, 2013, 42(1):13-18. WU Xiaoli, HAN Chunhao, PING Jinsong. Monitoring and analysis of regional ionosphere with GEO satellite observations[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):13-18. [69] ZHANG Xiaohong, TANG Long. Daily global plasmaspheric maps derived from COSMIC GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6040-6046. [70] LAWRENCE D, COBB H S, GUTT G, et al. Innovation:navigation from LEO[EB/OL]. (2017-06-30). http://gpsworld.com/innovation-navigation-from-leo/. [71] JOERGER M, NEALE J, PERVAN B. Iridium/GPS carrier phase positioning and fault detection over wide areas[C]//Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, GA:ION, 2009:1371-1385. [72] 田世伟, 李广侠, 常江, 等. 基于铱星增强的GPS系统RAIM性能[J]. 解放军理工大学学报(自然科学版), 2013, 14(3):237-241. TIAN Shiwei, LI Guangxia, CHANG Jiang, et al. Receiver autonomous integrity monitoring in iridium-augmented GPS[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(3):237-241. [73] 姚铮, 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京:电子工业出版社, 2016. YAO Zheng, LU Mingquan. Design principles and implementation techniques of the signals for the new-generation satellite navigation systems[M]. Beijing:Publishing House of Electronics Industry, 2016. [74] KELSO T S. Analysis of the Iridium 33-cosmos 2251 collision[C]//Proceedings of 2009 AMOS Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii:[s.n], 2009:1099-1112. [75] JOHNSON N L. Space debris mitigation guidelines[C]//Symposium on Small Satellite Programmes for Sustainable Development. Graz, Austria:NASA, 2011. [76] VIRGILI B B, DOLADO J C, LEWIS H G, et al. Risk to space sustainability from large constellations of satellites[J]. Acta Astronautica, 2016(126):154-162. [77] 程鹏飞, 景宾, 赵静. 伽利略系统及其地面段的设计[J]. 海洋测绘, 2003, 23(4):49-53. CHENG Pengfei, JING Bin, ZHAO Jing. Galileo system and design of the ground segment[J]. Hydrographic Surveying and Charting, 2003, 23(4):49-53. [78] WANG Lei, CHEN Ruizhi, XU Beizhen, et al. The challenges of LEO based navigation augmentation system-lessons learned from Luojia-1A satellite[M]//SUN Jiadong, YANG Changfeng, YANG Yuanxi. China Satellite Navigation Conference (CSNC) 2019 Proceedings Volume Ⅱ. Singapore:Springer, 2019:298-310. [79] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11):1501-1505. LI Deren, SHEN Xin, LI Dilong, et al. On civil-military integrated space-based real-time information service system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1501-1505. |
[1] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[2] | DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. |
[3] | YUAN Yunbin, HOU Pengyu, ZHANG Baocheng. GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1225-1238. |
[4] | JIN Shuanggen, WANG Qisheng, SHI Qiqi. Parameters estimation and applications from single- to five-frequency multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1239-1248. |
[5] | LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293. |
[6] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[7] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[8] | YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. |
[9] | DENG Zhiguo, WANG Jungang, GE Maorong. The GBM rapid product and the improvement from undifferenced ambiguity resolution [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. |
[10] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
[11] | CHEN Ruizhi, YU Baoguo, WANG Fuhong, GONG Xuewen, BAO Yachuan, WANG Lei, LIU Wanke, FU Wenju. Orbit determination and time synchronization of spatial information network combining sparse regional ground stations [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1211-1221. |
[12] | HE Xiufeng, ZHAN Wei, SHI Hongkai. A GNSS water vapor tomography method considering boundary signals and vertical constraint [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 853-862. |
[13] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[14] | PENG Zihan, GAO Chengfa, LIU Yongsheng, ZHANG Ruicheng, SHANG Rui. Variational mode decomposition method for estimation of GNSS data quality from a smartphone [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 475-486. |
[15] | ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, DING Nan, LIU Xin, MA Pengxu. Tightly coupled water vapor tomography algorithm for combining GNSS and MODIS signals [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 496-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||