[1] 王慧林, 邱涤珊, 黄小军, 等. 面向区域覆盖的电子侦察卫星规划方法研究[J]. 兵工学报, 2011, 32(11):1365-1372. WANG Huilin, QIU Dishan, HUANG Xiaojun, et al. Research on schedule technique for area-detecting electronic reconnaissance satellite[J]. Acta Armamentarii, 2011, 32(11):1365-1372. [2] 徐青, 姜挺, 周杨, 等. 空间态势感知信息支持系统的构建[J]. 测绘科学技术学报, 2013, 30(4):424-432. XU Qing, JIANG Ting, ZHOU Yang, et al. Construction of space situational awareness information support system[J]. Journal of Geomatics Science and Technology, 2013, 30(4):424-432. [3] 吕亮, 赵英豪, 徐青, 等. 一种遥感卫星连续过境区域快速判定方法[J]. 测绘科学技术学报, 2018, 35(2):165-169, 174. LÜ Liang, ZHAO Yinghao, XU Qing, et al. A rapid method for determining continuous transit area of remote sensing satellite[J]. Journal of Geomatics Science and Technology, 2018, 35(2):165-169, 174. [4] 张润. 基于重访周期的对地侦察小卫星星座设计[D]. 西安:西安电子科技大学, 2012. ZHANG Run. Design of the ground reconnotired minisat constellation based on revisit cycle[D]. Xi'an:Xidian University, 2012. [5] 马吉康. 通信卫星组网仿真系统的设计与实现[D]. 北京:北京邮电大学, 2008. MA Jikang. The design and implementation of simulation system of telecommunication satellite network[D]. Beijing:Beijing University of Posts and Telecommunications, 2008. [6] 刘华俊, 蔡波, 朱庆. 一种成像卫星区域覆盖的自适应规划方法[J]. 武汉大学学报(信息科学版), 2017, 42(12):1719-1724. LIU Huajun, CAI Bo, ZHU Qing. Self-adaptive planning method of imaging reconnaissance satellites area coverage[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1719-1724. [7] 沈欣, 李德仁, 姚璜. 一种面向成像任务规划的光学遥感卫星成像窗口快速预报方法[J]. 武汉大学学报(信息科学版), 2012, 37(12):1468-1471. SHEN Xin, LI Deren, YAO Huang. A fast algorithm for imaging time window prediction of optical satellites considering J_2 perturbation for imaging mission scheduling[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1468-1471. [8] 汪荣峰. 空间态势可视化与分析技术[M]. 北京:国防工业出版社, 2017:360-377. WANG Rongfeng. Visualization and analysis technology of space situation[M]. Beijing:National Defense Industry Press, 2017:360-377. [9] 吴晓洋. 基于几何拓扑的遥感卫星高精度对地覆盖分布式算法研究与应用[D]. 开封:河南大学, 2016. WU Xiaoyang. Research and application on remote sensing satellite high-precision to cover the distributed algorithm based on the geometric topology[D]. Kaifeng:Henan University, 2016. [10] 汪荣峰. 基于多边形布尔运算的卫星区域覆盖分析算法[J]. 装备学院学报, 2016, 27(2):83-87. WANG Rongfeng. Analysis algorithm for satellite regional coverage based on polygonal Boolean operation[J]. Journal of Equipment Academy, 2016, 27(2):83-87. [11] 范协裕. 空间云计算平台集群服务与矢量数据并行处理研究[D]. 北京:中国科学院大学, 2013. FAN Xieyu. Research on technologies of cluster service and parallel vector data processing for spatial cloud computing platform[D]. Beijing:University of Chinese Academy of Sciences, 2013. [12] 王密, 张致齐, 董志鹏, 等. 高分辨率光学卫星影像高精度在轨实时云检测的流式计算[J]. 测绘学报, 2018, 47(6):760-769. DOI:10.11947/j.AGCS.2018.20170618. WANG Mi, ZHANG Zhiqi, DONG Zhipeng, et al. Stream-computing based high accuracy on-board real-time cloud detection for high resolution optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):760-769. DOI:10.11947/j.AGCS.2018.20170618. [13] WANG Mi, ZHANG Zhiqi, DONG Zhipeng, et al. Stream-computing of high accuracy on-board real-time cloud detection for high resolution optical satellite imagery[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):50-59. DOI:10.11947/j.JGGS.2019.0206. [14] 卢万杰, 徐青, 蓝朝桢, 等. 卫星对地覆盖时间窗口实时计算方法[J]. 地球信息科学学报, 2019, 21(11):1689-1698. LU Wanjie, XU Qing, LAN Chaozhen, et al. A real-time calculation method for satellite ground coverage time window[J]. Journal of Geo-Information Science, 2019, 21(11):1689-1698. [15] LU Wanjie, XU Qing, LAN Chaozhen, et al. Microservice-based platform for space situational awareness data analytics[J]. International Journal of Geo-information Science, 2020,1(1):1-22. [16] BLASCHKE T, DONERT K, GOSSETTE F, et al. Virtual globes:serving science and society[J]. Information, 2012, 3(3):372-390. [17] DE PAOR D G, DORDEVIC M M, KARABINOS P, et al. Exploring the reasons for the seasons using Google earth, 3D models, and plots[J]. International Journal of Digital Earth, 2017, 10(6):582-603. [18] LÜ Liang, XU Qing, LAN Chaozhen, et al. Sino-InSpace:A digital simulation platform for virtual space environments[J]. ISPRS International Journal of Geo-Information, 2018, 7(9):373. [19] Open Geospatial Consortium. OGC KML 2.3[EB/OL].[2015-08-04]. http://docs.opengeospatial.org/is/12-007r2/12-007r2.html. [20] TONG X H. Modeling cadastral spatial features based on geography markup language in GIS:a case study in Shanghai[J]. Journal of Environmental Informatics, 2005, 6(2):103-110. [21] GRÖGER G, PLÜMER L. CityGML-interoperable semantic 3D city models[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2012, 71:12-33. [22] ZHU Liangfeng, WANG Zhongliang, LI Zhiwen. Representing time-dynamic geospatial objects on virtual globes using CZML-Part I:overview and key issues[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):97. [23] ZHU Liangfeng, LI Zhiwen, WANG Zhongliang. Representing time-dynamic geospatial objects on virtual globes using CZML-Part Ⅱ:impact, comparison, and future developments[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):102. [24] KUMAR K, LEDOUX H, STOTER J. Dynamic 3D visualization of floods:case of the Netherlands[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Delft, The Netherlands:[s.n.], 2018, XLII-4/W10:83-87. [25] 代明竹, 高嵩峰. 基于Hadoop、Spark及Flink大规模数据分析的性能评价[J]. 中国电子科学研究院学报, 2018, 13(2):149-155. DAI Mingzhu, GAO Songfeng. Framework performance evaluation based on Hadoop, Spark and Flink large-scale data analysis[J]. Journal of CAEIT, 2018, 13(2):149-155. [26] VERMA A, MANSURI A H, JAIN N. Big data management processing with Hadoop MapReduce and Spark technology:a comparison[C]//Proceeding of 2016 Symposium on Colossal Data Analysis and Networking. Indore, India:IEEE, 2016:1-4. [27] MARCU O C, COSTAN A, ANTONIU G, et al. Spark versus Flink:understanding performance in big data analytics frameworks[C]//Proceeding of 2016 IEEE International Conference on Cluster Computing. Taipei, China:IEEE, 2016:433-442. [28] LOPEZ M A, LOBATO A G P, DUARTE O C M B. A performance comparison of open-source stream processing platforms[C]//Proceeding of 2016 IEEE Global Communications Conference. Washington, DC:IEEE, 2016:1-6. [29] CARBONE P, KATSIFODIMOS A, EWEN S, et al. Apache FlinkTM:stream and batch processing in a single engine[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4):28-38. [30] 倪政君, 夏哲雷. Flink的并行Apriori算法设计与实现[J]. 中国计量大学学报, 2018, 29(2):175-180. NI Zhengjun, XIA Zhelei. Design and implementation of the parallel Apriori algorithm on Flink platforms[J]. Journal of China University of Metrology, 2018, 29(2):175-180. |