[1] 崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差[M]. 2版. 武汉:武汉大学出版社, 2009. CUI Xizhang, YU Zongchou, TAO Benzao, et al. Generalized surveying adjustment[M]. 2nd ed. Wuhan:Wuhan University Press, 2009. [2] 朱建军, 田玉淼, 陶肖静. 带准则参数的平差准则及其统一与解算[J]. 测绘学报, 2012, 41(1):8-13. ZHU Jianjun, TIAN Yumiao, TAO Xiaojing. United expression and solution of adjustment criteria with parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):8-13. [3] 欧吉坤. 测量平差中不适定问题解的统一表达与选权拟合法[J]. 测绘学报, 2004, 33(4):283-288. OU Jikun. Uniform expression of solutions of Ill- posed problems in surveying adjustment and the fitting method by selection of the parameter weights[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(4):283-288. [4] TIKHONOV A N. Regularization of ill-posed problems[J]. Doklady Akademii Nauk SSSR, 1963, 151(1):49-52. [5] SAVE H, BETTADPUR S, TAPLEY B D. Reducing errors in the GRACE gravity solutions using regularization[J]. Journal of Geodesy, 2012, 86(9):695-711. [6] LI Bofeng, SHEN Yunzhong, FENG Yanming. Fast GNSS ambiguity resolution as an Ill-posed problem[J]. Journal of Geodesy, 2010, 84(11):683-698. [7] GUI Qingming, HAN Songhui. New algorithm of GPS rapid positioning based on double-k-type ridge estimation[J]. Journal of Surveying Engineering, 2007, 133(4):173-178. [8] 王振杰, 欧吉坤, 柳林涛. 单频GPS快速定位中病态问题的解法研究[J]. 测绘学报, 2005, 34(5):196-201. WANG Zhenjie, OU Jikun, LIU Lintao. Investigation on solutions of ill-conditioned problems in rapid positioning using single frequency GPS receivers[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(5):196-201. [9] 徐新禹, 李建成, 王正涛, 等. Tikhonov正则化方法在GOCE重力场求解中的模拟研究[J]. 测绘学报, 2010, 39(5):465-470. XU Xinyu, LI Jiancheng, WANG Zhengtao, et al. The simulation research on the Tikhonov regularization applied in gravity field determination of GOCE satellite mission[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):465-470. [10] HOERL A E, KENNARD RW. Ridge regression:biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1):55-67. [11] 林东方, 朱建军, 宋迎春, 等. 正则化的奇异值分解参数构造法[J]. 测绘学报, 2016, 45(8):883-889. DOI:10.11947/j.AGCS.2016.20150134. LIN Dongfang, ZHU Jianjun, SONG Yingchun, et al. Construction method of regularization by singular value decomposition of design matrix[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):883-889. DOI:10.11947/j.AGCS.2016.20150134. [12] GOLUB G H, HEATH M, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2):215-223. [13] XU Peiliang. Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems[J]. Geophysical Journal International, 2009, 179(1):182-200. [14] FENU C, REICHEL L, RODRIGUEZ G, et al. GCV for Tikhonov regularization by partial SVD[J]. BIT Numerical Mathematics, 2017, 57(4):1019-1039. [15] HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4):561-580. [16] KUSCHE J, KLEES R. Regularization of gravity field estimation from satellite gravity gradients[J]. Journal of Geodesy, 2002, 76(6):359-368. [17] XU Peiliang. Determination of surface gravity anomalies using gradiometric observables[J]. Geophysical Journal International, 1992, 110(2):321-332. [18] XU Peiliang, SHEN Yunzhong, FUKUDA Y, et al. Variance component estimation in linear inverse ill-posed models[J]. Journal of Geodesy, 2006, 80(2):69-81. [19] SCHAFFRIN B. Minimum mean squared error (MSE) adjustment and the optimal Tykhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE)[J]. Journal of Geodesy, 2008, 82(2):113-121. [20] 徐天河, 杨元喜. 均方误差意义下正则化解优于最小二乘解的条件[J]. 武汉大学学报(信息科学版), 2004, 29(3):223-226. XU Tianhe, YANG Yuanxi. Condition of regularization solution superior to LS solution based on MSE principle[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):223-226. [21] SHEN Yunzhong, XU Peiliang, LI Bofeng. Bias-corrected regularized solution to inverse Ill-posed models[J]. Journal of Geodesy, 2012, 86(8):597-608. [22] 王兴涛, 石磐, 朱非洲. 航空重力测量数据向下延拓的正则化算法及其谱分解[J]. 测绘学报, 2004, 33(1):33-38. WANG Xingtao, SHI Pan, ZHU Feizhou. Regularization methods and spectral decomposition for the downward continuation of airborne gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1):33-38. [23] BAUER F, LUKAS M A. Comparing parameter choice methods for regularization of ill-posed problems[J]. Mathematics and Computers in Simulation, 2011, 81(9):1795-1841. [24] REICHEL L, RODRIGUEZ G. Old and new parameter choice rules for discrete ill-posed problems[J]. Numerical Algorithms, 2013, 63(1):65-87. [25] 王振杰, 欧吉坤. 用L-曲线法确定岭估计中的岭参数[J]. 武汉大学学报(信息科学版), 2004, 29(3):235-238. WANG Zhenjie, OU Jikun. Determining the ridge parameter in a ridge estimation using L-curve method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):235-238. [26] 付海强, 朱建军, 汪长城, 等. 极化干涉SAR植被高反演复数最小二乘平差法[J]. 测绘学报, 2014, 43(10):1061-1067. FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Polarimetric SAR interferometry vegetation height inversion method of complex least squares adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1061-1067. [27] 朱建军, 解清华, 左廷英, 等. 复数域最小二乘平差及其在PolInSAR植被高反演中的应用[J]. 测绘学报, 2014, 43(1):45-51, 59. ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Criterion of complex least squares adjustment and its application in tree height inversion with PolInSAR data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1):45-51, 59. |