[1] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [2] HAYES D, HAHN J. Galileo programme update[C]//Proceedings of 14th Meeting of the International Committee on GNSS. Bangalore, India, 2019. [3] BURY G, SOS'NICA K, ZAJDEL R, et al. Toward the 1-cm Galileo orbits:challenges in modeling of perturbing forces[J]. Journal of Geodesy, 2020, 94(2):16. [4] DACH R, BROCKMANN E, SCHAER S, et al. GNSS processing at CODE:status report[J]. Journal of Geodesy, 2009, 83(3-4):353-365. [5] GUO Jing, XU Xiaolong, ZHAO Qile, et al. Precise orbit determination for quad-constellation satellites at Wuhan University:strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2):143-159. [6] PRANGE L, ORLIAC E, DACH R, et al. CODE's five-system orbit and clock solution-the challenges of multi-GNSS data analysis[J]. Journal of Geodesy, 2017, 91(4):345-360. [7] ZHANG Rui, TU Rui, LIU Jinhai, et al. Performance of Galileo:global coverage, precise orbit determination, and precise positioning[J]. Advances in Space Research, 2019, 64(2):299-313. [8] LIU Teng, YUAN Yunbin, ZHANG Baocheng, et al. Multi-GNSS precise point positioning (MGPPP) using raw observations[J]. Journal of Geodesy, 2017, 91(3):253-268. [9] ZHOU Feng, DONG Danan, GE Maorong, et al. Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations[J]. GPS Solutions, 2018, 22(1):19. [10] KESHIN M O, LE A Q, VAN DER MAREL H. Single and dual-frequency precise point positioning:approaches and performance[C]//Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies. Noordwijk, The Netherlands:NAVITEC, 2006:11-13. [11] 张宝成, 欧吉坤, 袁运斌, 等. 利用非组合精密单点定位技术确定斜向电离层总电子含量和站星差分码偏差[J]. 测绘学报, 2011, 40(4):447-453. ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Calibration of slant total electron content and satellite-receiver's differential code biases with uncombined precise point positioning technique[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):447-453. [12] 张宝成, 欧吉坤, 李子申, 等. 利用精密单点定位求解电离层延迟[J]. 地球物理学报, 2011, 54(4):950-957. ZHANG Baocheng, OU Jikun, LI Zishen, et al. Determination of ionospheric observables with precise point positioning[J]. Chinese Journal of Geophysics, 2011, 54(4):950-957. [13] 周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海:华东师范大学, 2018. ZHOU Feng. Theory and methodology of multi-GNSS undifferenced and uncombined precise point positioning[D]. Shanghai:East China Normal University, 2018. [14] GUO Fei, ZHANG Xiaohong, WANG Jinling, et al. Modeling and assessment of triple-frequency BDS precise point positioning[J]. Journal of Geodesy, 2016, 90(11):1223-1235. [15] 辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉:武汉大学, 2013. GU Shengfeng. Research on the Zero-difference Un-combined data processing model for multi-frequency GNSS and its applications[D]. Wuhan:Wuhan University, 2013. [16] ZEHENTNER N, MAYER-GVRR T. New approach to estimate time variable gravity fields from high-low satellite tracking data[M]//MARTI U. Gravity, Geoid and Height Systems. Cham:Springer, 2014:111-116. [17] 郭靖. 姿态、光压和函数模型对导航卫星精密定轨影响的研究[D]. 武汉:武汉大学, 2014. GUO Jing. The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites[D]. Wuhan:Wuhan University, 2014. [18] 陈华. 基于原始观测值的GNSS统一快速精密数据处理方法[D]. 武汉:武汉大学, 2015. CHEN Hua. An efficient and unified GNSS raw data processing strategy[D]. Wuhan:Wuhan University, 2015. [19] ZENG Tian, SUI Lifen, RUAN Rengui, et al. Uncombined precise orbit and clock determination of GPS and BDS-3[J]. Satellite Navigation, 2020, 1(1):19. [20] BOEHM J, NIELL A, TREGONING P, et al. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33(7):L07304. [21] BOEHM J, HEINKELMANN R, SCHUH H. Short Note:A global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81(10):679-683. [22] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin Géodésique (1946-1975), 1972, 105(1):279-298. [23] WU J, WU S, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Manuscripta Geodaetica, 1993, 18(2):91-98. [24] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43(10):1099. DOI:10.13485/j.cnki.11-2089.2014.0155. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS Data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1099. DOI:10.13485/j.cnki.11-2089.2014.0155. [25] 张小红, 李星星. 非差模糊度整数固定解PPP新方法及实验[J]. 武汉大学学报(信息科学版), 2010, 35(6):657-660. ZHANG Xiaohong, LI Xingxing. A new method for zero-differenced interger ambiguity resolution and its application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):657-660. [26] BLEWITT G. An automatic editing algorithm for GPS data[J]. Geophysical Research Letters, 1990, 17(3):199-202. [27] HATCH R, JUNG J, ENGE P, et al. Civilian GPS:the benefits of three frequencies[J]. GPS Solutions, 2000, 3(4):1-9. [28] GE Maorong, GENDT G, DICK G, et al. Improving carrier-phase ambiguity resolution in global GPS network solutions[J]. Journal of Geodesy, 2005, 79(1-3):103-110. [29] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J]. Journal of Geodesy, 2015, 89(8):775-791. [30] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B4):B04406. [31] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides:modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5-6):394-415. [32] PETIT G, LUZUM B. IERS conventions 2010[R]. No.36 in IERS Technical Note. Frankfurt am Main, Germany:Verlag des Bundesamts für Kartographie und Geodäsie, 2010. [33] LI Xingxing, ZHU Yiting, ZHENG Kai, et al. Precise orbit and clock products of galileo, BDS and QZSS from MGEX since 2018:comparison and PPP validation[J]. Remote Sensing, 2020, 12(9):1415. [34] GE Maorong, CHEN Junping, DOUŠA J, et al. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime[J]. GPS Solutions, 2012, 16(1):9-17. [35] PEARLMAN M R, NOLL C E, PAVLIS E C, et al. The ILRS:approaching 20 years and planning for the future[J]. Journal of Geodesy, 2019, 93(11):2161-2180. |