[1] FRIIS-CHRISTENSEN E, LVHR H, KNUDSEN D, et al. Swarm:an earth observation mission investigating geospace[J]. Advances in Space Research, 2008, 41(1):210-216. [2] VAN DEN IJSSEL J, ENCARNAÇÃO J, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6):1042-1055. [3] REN L, SCHÖN S. PPP-based Swarm kinematic orbit determination[J]. Annales Geophysicae, 2018, 36(5):1227-1241. [4] VISSER P, DOORNBOS E, VAN DEN IJSSEL J, et al. Thermospheric density and wind retrieval from Swarm observations[J]. Earth, Planets and Space, 2013, 65(11):1319-1331. [5] JÄGGI A, DAHLE C, ARNOLD D. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Advances in Space Research, 2016, 57(1):218-233. [6] 田英国, 郝金明. Swarm卫星天线相位中心校正及其对精密定轨的影响[J]. 测绘学报, 2016, 45(12):1406-1412, 1433. DOI:10.11947/j.AGCS.2016.20160132. TIAN Yingguo, HAO Jinming. Swarm satellite antenna phase center correction and its influence on the precision orbit determination[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12):1406-1412, 1433. DOI:10.11947/j.AGCS.2016.20160132. [7] 张兵兵, 王正涛, 冯建迪, 等. 伪随机脉冲先验值对低轨卫星简化动力学定轨精度的影响[J]. 武汉大学学报(信息科学版), 2018, 43(8):1222-1227, 1241. ZHANG Bingbing, WANG Zhengtao, FENG Jiandi, et al. Impact of pseudo-stochastic pulse priors on LEO reduced-dynamic orbit accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8):1222-1227, 1241. [8] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. ZHANG Bingbing, NIE Linjuan, WU Tangting, et al. Centimeter precise orbit determination for SWARM satellite via reduced-dynamic method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. [9] ZHANG Bingbing, WANG Zhengtao, ZHOU LV, et al. Precise orbit solution for Swarm using space-borne GPS data and optimized pseudo-stochastic pulses[J]. Sensors, 2017, 17(3):635. [10] FLECHTNER F, MORTON P, WATKINS M, et al. Status of the GRACE follow-on mission[M]//Gravity, Geoid and Height Systems. Berlin:Springer International Publishing, 2014:117-121. [11] DACH R, LUTZ S, WALSER P, et al. Bernese GNSS software version 5.2. user manual[M]. Bern:Bern Open Publishing, 2015. [12] ZEHENTNER N, MAYER-GVRR T. Precise orbit determination based on raw GPS measurements[J]. Journal of Geodesy, 2016, 90(3):275-286. [13] LVCK C, KUSCHE J, RIETBROEK R, et al. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits[J]. Solid Earth, 2018, 9(2):323-339. [14] DAHLE C, ARNOLD D, JÄGGI A. Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery[J]. Advances in Space Research, 2017, 59(12):2843-2854. [15] DA ENCARNAÇÃO J T, ARNOLD D, BEZDĚK A, et al. Gravity field models derived from Swarm GPS data[J]. Earth, Planets and Space, 2016, 68(1):127. [16] ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3):1275-1284. [17] MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking[J]. GPS Solutions, 2018, 22(3):79. [18] MAO X, VISSER P N A M, VAN DEN IJSSEL J. High-dynamic baseline determination for the Swarm constellation[J]. Aerospace Science and Technology, 2019, 88:329-339. [19] ZHANG Keke, LI Xingxing, XIONG Chao, et al. The influence of geomagnetic storm of 7-8 September 2017 on the Swarm precise orbit determination[J]. Journal of Geophysical Research:Space Physics, 2019, 124(8):6971-6984. [20] MEYER U, SOSNICA K, ARNOLD D, et al. SLR, GRACE and Swarm gravity field determination and combination[J]. Remote Sensing, 2019, 11(8):956. [21] DAHLE C, ARNOLD D, JÄGGI A. Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery[J]. Advances in Space Research, 2017, 59(12):2843-2854. [22] CHRISTODOULOU V, BI Yaxin, WILKIE G. A tool for Swarm satellite data analysis and anomaly detection[J]. PLoS ONE, 2019, 14(4):e0212098. [23] CAI Changsheng, LIU Zhizhao, XIA Pengfei, et al. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity[J]. GPS Solutions, 2013, 17(2):247-260. [24] BOCK H, JÄGGI A, BEUTLER G, et al. GOCE:precise orbit determination for the entire mission[J]. Journal of Geodesy, 2014, 88(11):1047-1060. [25] BOCK H, JÄGGI A, MEYER U, et al. GPS-derived orbits for the GOCE satellite[J]. Journal of Geodesy, 2011, 85(11):807-818. [26] XU Guochang. Sciences of geodesy-I:advances and future directions[M]. Berlin:Springer, 2010. [27] ARNOLD D, MONTENBRUCK O, HACKEL S, et al. Satellite laser ranging to low earth orbiters:orbit and network validation[J]. Journal of Geodesy, 2019, 93(11):2315-2334. [28] PETROV L, BOY J P. Study of the atmospheric pressure loading signal in very long baseline interferometry observations[J]. Journal of Geophysical Research, 2004, 109(B3):B03405. |