[1] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017,46(10):1389-1398. JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R)[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1389-1398. [2] LARSON K M, LOFGREN J S, HAAS R, Coastal sea level measurements using a single geodetic GPS receiver[J]. Adv Space Res. 2013, 51(8):1301-1310. [3] 张双成, 南阳, 李振宇, 等. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016, 45(9):1042-1049. ZHANG Shuangcheng, NAN Yang, LI Zhenyu, et al. Analysis of tide variation monitored by GNSS-MR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1042-1049. [4] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9):1168-1178. HE Xiufeng, WANG Jie, WANG Xiaolei, et al.Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1168-1178. [5] LARSON K M, GUTMANN E D, ZAVOROTNY, et al. Can we measure snow depth with GPS receivers?[J] Geophys. Res. Lett., 2009, 36(17):1-5. [6] 周威, 刘立龙, 黄良珂, 等. GLONASS卫星SNR信号的雪深探测[J]. 遥感学报, 2018, 22(5):889-899. ZHOU Wei, LIU Lilong, HUANG Liangke, et al. Monitoring snow depth based on the SNR signal of GLONASS satellites[J]. Journal of Remote Sensing, 2018, 22(5):889-899. [7] 张双成, 戴凯阳, 南阳, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2):234-240. ZHANG Shuangcheng, DAI Kaiyang, NAN Yang,et al. Preliminary research on GNSS-MR for snow depth[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):234-240. [8] 边少锋, 周威, 刘立龙,等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9):1179-1188. BIAN Shaofeng, ZHOU Wei, LIU Lilong, et al. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1179-1188. [9] 王泽民, 刘智康, 安家春,等. 基于GPS和北斗信噪比观测值的雪深反演及其误差分析[J].测绘学报, 2018, 47(1):8-16. WANG Zemin, LIU Zhikang, AN Jiachun, et al. Snow depth detection and error analysis derived from SNR of GPS and BDS[J].Acta Geodaetica et Cartographica Sinica, 2018, 47(1):8-16. [10] LARSON K M, SMALL E E. Normalized microwave reflection index:a vegetation measurement derived from GPS networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(5):1501-1511. [11] 梁月吉,任超,黄仪邦,等.利用GPS-IR监测土壤湿度的多星线性回归反演模型[J]. 测绘学报, 2020, 49(7):1001-1595. LIANG Yueji, REN Chao, HUANG Yibang, et al. Multi-star linear regression retrieval model for monitoring soil moisture using GPS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):1001-1595. [12] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11):2735-2744. YAN Songhua, GONG Jianya, ZHANG Xunxie, et al. Ground based GNSS-R observations for soil moisture[J]. Chinese Journal of Geophys, 2011, 54(11):2735-2744. [13] LARSON K M, SMALL E E, GUTMANN E, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophys. Res. Lett., 2008, 35(24):L24405. [14] 吴学睿, 夏俊明, 白伟华, 等. GNSS-R/IR监测地表冻融状态对延迟多普勒波形和多路径数据影响分析[J]. 测绘学报, 2019, 48(8):1059-1066. WU Xuerui, XIA Junming, BAI Weihua, et al. Theoretical analysis of soil freeze/thaw process on DDM waveform and multipath in order for GNSS-R/IR applications[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1059-1066. [15] RUF C S, GLEASON S, MCKAGUE D S. Assessment of CYGNSS wind speed retrieval uncertainty[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019. 12(1):87-97. [16] ROGGENBUCK O, REINKING J, LAMBERTUS T. Determination of significant wave heights using damping coefficients of attenuated GNSS SNR data from static and kinematic observations[J]. Remote Sensing, 2019, 11(4):409-421. [17] REINKING J, ROGGENBUCK O, EVEN-TZUR G. Estimating wave direction using terrestrial GNSS reflectometry[J]. Remote Sensing, 2019, 11(9):1027-1040. [18] WANG Xiaolei,ZHANG Qin,ZHANG Shuangcheng. Sea level estimation from SNR data of geodetic receivers using wavelet analysis[J]. GPS Solutions, 2019, 23(1):1-14. [19] WANG Xiaolei,HE Xiufeng,ZHANG Qin. Coherent superposition of multi-GNSS wavelet analysis periodogram for sea-level retrieval in GNSS multipath reflectometry[J]. Advances in Space Research, 2019, 65(7):1781-1788. [20] NIEVINSKI F G,LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2):309-322. [21] NAYAR S K, IKEUCHI K, KANADE T. Surface reflection:physical and geometrical perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(7):611-634. [22] ALONSO-ARROYO A, CAMPS A, et al. Retrieval of significant wave height and mean sea surface level using the GNSS-R interference pattern technique:results from a three-month field campaign[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3198-3209. [23] PIERSON W J, MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii[J]. Journal of Geophysical Research, 1964(69):5181-5190. [24] WANG Xiaolei, HE Xiufeng, ZHANG Qin. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote Sensing of Environment, 2019(231):111229-111239. [25] SANTAMARIA-GOMEZ A, WATSON C. Remote leveling of tide gauges using GNSS reflectometry:case study at Spring Bay, Australia[J]. GPS Solutions, 2016, 21(2):451-459. [26] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3):1-10. [27] WANG Xiaolei, ZHANG Shuangcheng, WANG Lifu, et al. Analysis and combination of multi-GNSS snow depth retrievals in multipath reflectometry[J]. GPS solutions, 2020, 24(3):13. DOI:https://doi.org/10.1007/s10291-020-00990-3. |