[1] HUANG Bo, WU Bo, BARRY M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401. [2] GOODCHILD M. Models of scale and scales of modeling[M]//TATE N J, ATKINSON P M. Modelling Scale in Geographical Information Science. Chichester: John Wiley and Sons, 2001: 3-10. [3] MCMASTER R B, SHEPPARD E. Introduction: scale and geographic inquiry[M]//SHEPPARD E, MCMASTER R B. Scale and Geographic Inquiry: Nature, Society, and Method. Malden, MA: Blackwell Publishing Ltd, 2004: 1-22. [4] 宋伟轩, 毛宁, 陈培阳, 等. 基于住宅价格视角的居住分异耦合机制与时空特征——以南京为例[J]. 地理学报, 2017, 72(4): 589-602. SONG Weixuan, MAO Ning, CHEN Peiyang, et al. Coupling mechanism and spatial-temporal pattern of residential differentiation from the perspective of housing prices: a case study of Nanjing[J]. Acta Geographica Sinica, 2017, 72(4): 589-602. [5] FOTHERINGHAM A S, CRESPO R, YAO Jing. Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis, 2015, 47(4): 431-452. [6] WU Bo, LI Rongrong, HUANG Bo. A geographically and temporally weighted autoregressive model with application to housing prices[J]. International Journal of Geographical Information Science, 2014, 28(5): 1186-1204. [7] 赵阳阳, 张小璐, 张福浩, 等. 一种局部多项式时空地理加权回归方法[J]. 测绘学报, 2018, 47(5): 663-671. DOI: 10.11947/j.AGCS.2018.20170674. ZHAO Yangyang, ZHANG Xiaolu, ZHANG Fuhao, et al. A local polynomial geographically and temporally weight regression[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 663-671. DOI: 10.11947/j.AGCS.2018.20170674. [8] HARVEY D. Explanation in geography[M].London: Edward Arnold, 1969. [9] GAO Peng, BIAN Ling. Scale effects on spatially embedded contact networks[J]. Computers, Environment and Urban Systems, 2016, 59: 142-151. [10] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Some notes on parametric significance tests for geographically weighted regression[J]. Journal of Regional Science, 1999, 39(3): 497-524. [11] MEI Changlin, WANG Ning, ZHANG Wenxiu. Testing the importance of the explanatory variables in a mixed geographically weighted regression model[J]. Environment and Planning A: Economy and Space, 2006, 38(3): 587-598. [12] 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366. LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356-1366. [13] FOTHERINGHAM A S, YANG Wenbai, KANG Wei. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265. [14] WU Chao, REN Fu, HU Wei, et al. Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices[J]. International Journal of Geographical Information Science, 2019, 33(3): 489-511. [15] AHLFELDT G. If Alonso was right: modeling accessibility and explaining the residential land gradient[J]. Journal of Regional Science, 2011, 51(2): 318-338. [16] APPARICIO P, ABDELMAJID M, RIVA M,et al. Comparing alternative approaches to measuring the geographical accessibility of urban health services: distance types and aggregation-error issues[J]. International Journal of Health Geographics, 2008, 7(1): 7-20. [17] WANG Jiasheng, YANG Kun, ZHU Yanhui, et al. Euclidean distance transform on the sea based on cellular automata modeling[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 71-80. [18] PEI Hongxing, ZHAI Renjian, WU Fang, et al. Automatic matching of multi-scale road networks under the constraints of smaller scale road meshes[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 73-83. [19] LIU Jiping, YANG Yi, XU Shenghua, et al. A geographically temporal weighted regression approach with travel distance for house price estimation[J]. Entropy, 2016, 18(8): 303-315. [20] LU Binbin, CHARLTON M, HARRIS P, et al. Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data[J]. International Journal of Geographical Information Science, 2014, 28(4): 660-681. [21] CUDNIK M T, YAO Jing, ZIVE D, et al. Surrogate markers of transport distance for out-of-hospital cardiac arrest patients[J]. Prehospital Emergency Care, 2012, 16(2): 266-272. [22] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298. [23] EVIN G, KAVETSKI D, THYER M, et al. Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration[J]. Water Resources Research, 2013, 49(7): 4518-4524. [24] HASTIE T J, TIBSHIRANI R J. Generalized additive models[M]. London: Chapman and Hall, 1990. [25] ZHANG Xiaojing, LIU Pan, CHENG Lei, et al. A back-fitting algorithm to improve real-time flood forecasting[J]. Journal of Hydrology, 2018, 562: 140-150. [26] PAUL J D, ROBERTS G G, WHITE N. The African landscape through space and time[J]. Tectonics, 2014, 33(6): 898-935. [27] BRUNSDON C, CORCORAN J, HIGGS G.Visualising space and time in crime patterns: a comparison of methods[J]. Computers, Environment and Urban Systems, 2007, 31(1): 52-75. [28] HE Qingqing, HUANG Bo. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018, 206: 72-83. [29] DONG Feng, LI Jingyun, ZHANG Shengnan, et al. Sensitivity analysis and spatial-temporal heterogeneity of CO2 emission intensity: evidence from China[J]. Resources, Conservation and Recycling, 2019, 150(11): 398-412. |