Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (5): 869-878.doi: 10.11947/j.AGCS.2024.20230353
• Geodesy and Navigation • Previous Articles Next Articles
Chuang SHI1(), Wei SONG2,3, Fu ZHENG1,4(), Haoyuan WANG1, Yuzhuo WANG5, Aimin ZHANG5, Weiming TANG6
Received:
2023-09-03
Revised:
2024-05-14
Published:
2024-06-19
Contact:
Fu ZHENG
E-mail:shichuang@buaa.edu.cn;fzheng@buaa.edu.cn
About author:
SHI Chuang (1968—), male, PhD, professor, PhD supervisor, majors in the theory and methods of satellite positioning, navigation and timing. E-mail: shichuang@buaa.edu.cn
Supported by:
CLC Number:
Chuang SHI, Wei SONG, Fu ZHENG, Haoyuan WANG, Yuzhuo WANG, Aimin ZHANG, Weiming TANG. BDS real-time 100 picosecond level single difference time and frequency synchronization method[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 869-878.
[1] | YANG Yuanxi, LIU Li, LI Jinlong, et al. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20): 2135-2143. |
[2] | YANG Yuanxi, MAO Yue, SUN Bijiao. Basic performance and future developments of BeiDou global navigation satellite system[J]. Satellite Navigation, 2020, 1(1): 1. |
[3] | 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. DOI: 10.11947/j.AGCS.2018.20180149. |
YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893-898. DOI: 10.11947/j.AGCS.2018.20180149 | |
[4] | 国家标准化管理委员会. 北斗卫星导航系统公开服务性能规范:GB/T 39473—2020[S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People's Republic of China. Specifications for open service performance of BeiDou navigation satellite system: GB/T 39473—2020[S]. Beijing: Standards Press of China, 2020. | |
[5] | ALLAN D W, WEISS M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]//Proceedings of the 34th Annual Symposium on Frequency Control. Philadelphia: IEEE, 1980: 334-346. |
[6] | JIANG Z. Time transfer with GPS satellites all in view[C]//Proceedings of 2004 Asia Pacific Workshop on Time and Frequency. Beijing: APMP, 2004: 236-243. |
[7] | SCHILDKNECHT T, DACH R, BOCK H. GPS phase measurements for high-precision time and frequency transfer[J]. IEEE Transactions on Instrumentation and Measurement, 1995.44(3), 634-638. |
[8] | ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017. |
[9] | WANG Shengli, ZHAO Xingwang, GE Yulong, et al. Investigation of real-time carrier phase time transfer using current multi-constellations[J]. Measurement, 2020, 166: 108237. |
[10] | DEFRAIGNE P, AERTS W, POTTIAUX E. Monitoring of UTC(k)'s using PPP and IGS real-time products[J]. GPS Solutions, 2015, 19(1): 165-172. |
[11] | 吕大千, 曾芳玲, 欧阳晓凤, 等. 时频传递的改进整数相位钟方法[J]. 测绘学报, 2019, 48(7): 889-897. DOI: 10.11947/j.AGCS.2019.20180248. |
LÜ Daqian, ZENG Fangling, OUYANG Xiaofeng, et al. Time and frequency transfer based on modified integer phase clock method[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 889-897. DOI: 10.11947/j.AGCS.2019.20180248. | |
[12] | PETIT G. Sub-10-16 accuracy GNSS frequency transfer with IPPP[J]. GPS Solutions, 2021, 25(1): 22. |
[13] | ROSE J A R, WATSON R J, ALLAIN D J, et al. Ionospheric corrections for GPS time transfer[J]. Radio Science, 2014, 49(3): 196-206. |
[14] | 于合理, 郝金明, 刘伟平, 等. 附加原子钟物理模型的PPP时间传递算法[J]. 测绘学报, 2016, 45(11): 1285-1292. DOI: 10.11947/j.AGCS.2016.20160217. |
YU Heli, HAO Jinming, LIU Weiping, et al. A time transfer algorithm of precise point positioning with additional atomic clock physical model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1285-1292. DOI: 10.11947/j.AGCS.2016.20160217. | |
[15] | 施闯, 张东, 宋伟, 等. 北斗广域高精度时间服务原型系统[J]. 测绘学报, 2020, 49(3): 269-277. DOI: 10.11947/j.AGCS.2020.20180534. |
SHI Chuang, ZHANG Dong, SONG Wei, et al. BeiDou wide-area precise timing prototype system[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 269-277. DOI: 10.11947/j.AGCS.2020.20180534. | |
[16] | 施闯, 辜声峰, 楼益栋, 等. 广域实时精密定位与时间服务系统[J]. 测绘学报, 2022, 51(7): 1206-1214. DOI: 10.11947/j.AGCS.2022.20220153. |
SHI Chuang, GU Shengfeng, LOU Yidong, et al. Real-time wide-area precise positioning and precise timing service system[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1206-1214. DOI: 10.11947/j.AGCS.2022.20220153. | |
[17] | DELPORTE J, MERCIER F, LAURICHESSE D, et al. GPS carrier-phase time transfer using single-difference integer ambiguity resolution[J]. International Journal of Navigation and Observation, 2008, 2008: 273785. |
[18] | LEE S W, SCHUTZ B E, LEE C B, et al. A study on the common-view and all-in-view GPS time transfer using carrier-phase measurements[J]. Metrologia, 2008, 45(2): 156-167. |
[19] | FENG Yanming, LI Bofei. Four dimensional real time kinematic state estimation and analysis of relative clock solutions[C]//Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation. Porlant: ION, 2010: 2092-2099. |
[20] | TU Rui, ZHANG Pengfei, ZHANG Rui, et al. Real-time and dynamic time transfer method based on double-differenced real-time kinematic mode[J]. IET Radar, Sonar & Navigation, 2021, 15(2): 143-153. |
[21] | XUE Xia, QIN Honglei, LU Hui. High-precision time synchronization of kinematic navigation system using GNSS RTK differential carrier phase time transfer[J]. Measurement, 2021, 176(6): 109132. |
[22] | 董孝松, 孙保琪, 杨海彦, 等. GNSS实时动态授时精度分析[J]. 中国空间科学技术, 2021, 41(6): 34-41. |
DONG Xiaosong, SUN Baoqi, YANG Haiyan, et al. Accuracy analysis of GNSS real-time kinematic timing[J]. Chinese Space Science and Technology, 2021, 41(6): 34-41. | |
[23] | 杨徐, 徐爱功, 秦小茜, 等. 高度角定权模型的BDS/GPS伪距单点定位分析[J]. 导航定位学报, 2017, 5(2): 72-78, 85. |
YANG Xu, XU Aigong, QIN Xiaoxi, et al. Analysis on BDS/GPS pseudorange point positioning with weight matrix models of elevation angles[J]. Journal of Navigation and Positioning, 2017, 5(2): 72-78, 85. | |
[24] | BIPM. BIPM time department data base[EB/OL]. [2023-11-21]. https://webtai.bipm.org/database/. |
[25] | PETIT G, JIANG Zhiheng, WHITE J, et al. Absolute calibration of an ashtech Z12-T GPS receiver[J]. GPS Solutions, 2001, 4(4): 41-46. |
[26] | International GNSS Service. Products-international GNSS service[EB/OL]. [2020-09-16]. https://igs.org/products/. |
[27] | ALLAN D W, BARNES J A. A modified Allan variance with increased oscillator characterization ability[C]//Proceedings of the 35th Annual Frequency Control Symposium. Philadelphia: IEEE, 1981: 470-475. |
[28] | ALLAN D W, WEISS M A, JESPERSEN J L. A frequency-domain view of time-domain characterization of clocks and time and frequency distribution systems[C]//Proceedings of the 45th Annual Symposium on Frequency Control. New York: IEEE, 1991: 667-678. |
[29] | IEEE UFFC. Stable32 by William Riley frequency stability analysis[EB/OL]. https://ieeeuffc.org/frequency-control/frequency-control-software/stable32/. |
[30] | 施闯, 郑福, 楼益栋, 等. 北斗高精度时频服务理论方法与应用[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1010-1018. |
SHI Chuang, ZHENG Fu, LOU Yidong, et al. BDS high-precision time and frequency service theorical method and application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1010-1018. |
[1] | Xiaoyong SONG, Yuanxi YANG, Yue MAO, Rengui RUAN, Long WANG. Schmidt Kalman filter in autonomous orbit determination of navigation satellites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 879-888. |
[2] | Tian HE, Guojie MENG, Weiwei WU, Xiaoning SU, Guoqiang ZHAO, Congmin WEI, Zhihua DONG. Preliminary analysis to positioning precision and crustal movement of BDS-3 data recorded by the China seismic experiment site [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 653-665. |
[3] | HU Chao, WANG Qianxin. GNSS ultra-rapid orbit and clock offset estimation method with the aid of the constraint of BDS-3 onboard clock [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 413-424. |
[4] | QU Weijing, HUANG Yong, XU Junyi, SUN Shuxian, ZHOU Shanshi, YANG Yufei, HE Bing, HU Xiaogong. Precise orbit determination using satellite laser ranging and inter-satellite link observations for BDS-3 satellites [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1437-1448. |
[5] | ZHA Jiuping, ZHANG Baocheng, LIU Teng, ZHANG Xiao, HOU Pengyu, YUAN Yunbin, LI Zishen. Undifferenced and uncombined PPP-RTK aided by BDS-3 PPP-B2b precise orbits [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1449-1459. |
[6] | LI Yang, WANG Ningbo, LI Zishen, WANG Liang, LI Zongyi. BDS-3 satellite difference code bias estimation with satellite phase center offset correction applied [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1460-1468. |
[7] | YUAN Rong, XIE Shengli, GAO Feng, LI Zhenni, HUANG Hanjun. BDS multi-frequency observation minimum noise coefficient combination method [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1298-1304. |
[8] | WANG Qianxin, HU Chao, WANG Zejie. Single station velocity determination of BDS-3 carrier phase observations with the constraints of heading angle [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 871-883. |
[9] | ZENG Huiyan, AI Lun, CHENG Jie, GENG Pengfei, ZHANG Ruwei, CHEN Mohan, SUN Shujie, LI Mingzhe. Analysis and solution of pseudorange layering between BDS-2 and BDS-3 systems [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 596-604. |
[10] | GUO Shiwei, SHI Chuang, FAN Lei, WEI Na, ZHANG Tao, FANG Xinqi, ZHOU Linghao. Estimation and analysis of geocenter motion using BDS-3 data [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2054-2065. |
[11] | RUAN Rengui, JIA Xiaolin, FENG Laiping, WANG Long, ZHANG Fen. Modeling non-conservative forces for BDS-3 MEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1862-1869. |
[12] | LI Xingxing, LI Jie, YUAN Yongqiang, ZHENG Hongjie, HUANG Shi, LIU Chengbo, ZHANG Keke. Assessment and improvement of the empirical solar radiation pressure models for BDS-3 satellites [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1680-1689. |
[13] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[14] | LI Bofeng, QIN Yuanyang, CHEN Guang'e. BDS-3 cycle slip and data gap repair based on the geometry-free ionosphere-filter model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 501-510. |
[15] | TIAN Yunqing, WANG Li, SHU Bao, HAN Qingqing, LI Long, YI Chen, XU Hao. Evaluation of the availability of BDS ARAIM [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 879-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||