Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (9): 1817-1828.doi: 10.11947/j.AGCS.2024.20220720
• Cartography and Geoinformation • Previous Articles
Wanzeng LIU1,2,3(), Hang CHEN2,4, Jiaxin REN2,5(), Zhaojiang ZHANG4, Ran LI1,2,3, Tingting ZHAO1,2,3, Xi ZHAI1,2,3, Xiuli ZHU1,2,3
Received:
2022-12-31
Published:
2024-10-16
Contact:
Jiaxin REN
E-mail:luwnzg@163.com;jaycecd@foxmail.com
About author:
LIU Wanzeng (1970—), male, PhD, professorate senior engineer, majors in spatio-temporal knowledge service. E-mail: luwnzg@163.com
Supported by:
CLC Number:
Wanzeng LIU, Hang CHEN, Jiaxin REN, Zhaojiang ZHANG, Ran LI, Tingting ZHAO, Xi ZHAI, Xiuli ZHU. Research on knowledge extraction from street scene images based on hybrid intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1817-1828.
Tab.1
Street scene prior knowledge optimization for alleviating over-segmentation of background instances caused by occlusion"
知识编号 | 知识描述 | 启发 |
---|---|---|
知识1 | 建筑物、植被等目标较大的面目标,只有足够长度的目标,才会导致同一目标分割成多个连通域 | 需重点关注标志杆等具有足够长度的显著目标 |
知识2 | 人行道、绿化带等线状目标紧邻道路,容易被道路上的车辆及行人遮挡 | 人的目标相对较小,需重点关注汽车 |
知识3 | 汽车为动态目标,与其他目标的空间关系是可变的;而标志杆为静态目标,与其他目标的空间关系是固定的 | 不同类型的目标需要用不同的方法进行优化,如标志杆选择影像中最显著的实例即可,而汽车由于位置不固定,则需要综合考虑所有汽车实例的影响 |
知识4 | 以影像拍摄地点为起点,距离越远越容易发生遮挡 | 需更加关注远处的目标 |
知识5 | 足够长或足够宽的后景目标会因为遮挡而被分割成多个连通域 | 较小的目标往往被完全遮挡,无法在影像上体现 |
"
输入:标注目标a,标注目标b | |||
输出:Left, Right, Front, Behind, Attched | |||
function Rule1(a,b) | |||
begin | |||
for i:=0 down to m | |||
begin | |||
if x1>x2 then | |||
begin | |||
Left(a,b)=True | |||
end; | |||
else if x1<x2 then | |||
begin | |||
Right(a,b)=True | |||
end; | |||
else if d1<d2 then | |||
begin | |||
Front(a,b)=True | |||
end | |||
else if d1>d2 then | |||
begin | |||
Behind(a,b)=True | |||
end; | |||
else if x1=x2 and d1=d2 then | |||
begin | |||
Attched(a,b)=True | |||
end; | |||
end; | |||
end; | |||
return Left, Right, Front, Behind, Attched |
[1] | 刘万增, 陈军, 翟曦, 等. 时空知识中心的研究进展与应用[J]. 测绘学报, 2021, 50(9):1183-1193. DOI: 10.11947/j.AGCS.2021.20210160. |
LIU Wanzeng, CHEN Jun, ZHAI Xi, et al. Research progress and application of spatiotemporal knowledge center[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1183-1193. DOI: 10.11947/j.AGCS.2021.20210160. | |
[2] | YING A O, PENGLONG L I, LI W, et al. Fully convolutional networks for street furniture identification in panorama images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4):59-71. |
[3] | GUSTAFSSON F K, DANELLJAN M, SCHON T B. Evaluating scalable Bayesian deep learning methods for robust computer vision[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1289-1298. |
[4] | ZUO Z, ZHANG W, ZHANG D. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):39-49. |
[5] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. |
[6] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525. |
[7] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-09-20]. https://arxiv.org/abs/1804.02767v1. |
[8] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. |
[9] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-08-17]. https://arxiv.org/abs/2004.10934v1. |
[10] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
[11] | HE Kaiming, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969. |
[12] | KIRILLOV A, HE Kaiming, GIRSHICK R, et al. Panoptic segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9404-9413. |
[13] | JOHNSON J, KRISHNA R, STARK M, et al. Image retrieval using scene graphs[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3668-3678. |
[14] | CHANG X, REN P, XU P, et al. Scene graphs: a survey of generations and applications[EB/OL]. [2024-03-17]http://arxiv.org/abs/2104.01111v1. |
[15] | TENG Yao, WANG Limin. Structured sparse R-CNN for direct scene graph generation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 19415-19424. |
[16] | YANG J, LU J, LEE S, et al. Graph R-CNN for scene graph generation[C]//Proceedings of 2018 European conference on computer vision (ECCV). Munich: Springer, 2018: 690-706. |
[17] | SHI Jing, ZHONG Yiwu, XU Ning, et al. A simple baseline for weakly-supervised scene graph generation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16393-16402. |
[18] | MALAWADE A V, YU S Y, HSU B, et al. roadscene2vec: a tool for extracting and embedding road scene-graphs[J]. Knowledge-Based Systems, 2022, 242:108245. |
[19] | CHENG Bowen, COLLINS M D, ZHU Yukun, et al. Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. |
[20] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. DOI: 10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping:fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005. DOI: 10.11947/j.AGCS.2021.20210235. | |
[21] | JUN C, ZHILIN L I, SONGNIAN L I, et al. From digitalized to intelligentized surveying and mapping: fundamental issues and research agenda[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):148-160. |
[22] | 任加新, 刘万增, 陈军, 等. 知识引导的碎片化栅格地形图比例尺智能识别[J]. 测绘学报, 2024, 53(1):146-157. DOI: 10.11947/j.AGCS.2024.20230005. |
REN Jiaxin, LIU Wanzeng, CHEN Jun, et al. Knowledge-guided intelligent recognition of the scale for fragmented raster topographic maps[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1):146-157. DOI: 10.11947/j.AGCS.2024.20230005. | |
[23] | 张帆, 刘瑜. 街景影像:基于人工智能的方法与应用[J]. 遥感学报, 2021, 25(5):1043-1054. |
ZHANG Fan, LIU Yu. Street view imagery: methods and applications based on artificial intelligence[J]. National Remote Sensing Bulletin, 2021, 25(5):1043-1054. | |
[24] | HOU Rui, LI Jie, BHARGAVA A, et al. Real-time panoptic segmentation from dense detections[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8520-8529. |
[25] | LÜ Zhengyao, LI Xiaoming, LI Xin, et al. Learning semantic person image generation by region-adaptive normalization[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10801-10810. |
[26] | SONG Sijie, ZHANG Wei, LIU Jiaying, et al. Unsupervised person image generation with semantic parsing transformation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2352-2361. |
[27] | MA Wenguang, MA Wei, XU Shibiao, et al. Pyramid ALKNet for semantic parsing of building facade image[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6):1009-1013. |
[28] | 徐鹏斌, 瞿安国, 王坤峰, 等. 全景分割研究综述[J]. 自动化学报, 2021, 47(3):549-568. |
XU Pengbin, JU Anguo, WANG Kunfeng, et al. A survey of panoptic segmentation methods[J]. Acta Automatica Sinica, 2021, 47(3):549-568. | |
[29] | WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European conference on computer vision. Munich: Springer, 2018. |
[30] | LI Z L, ZHAO R L, CHEN J. A Voronoi-based spatial algebra for spatial relations[J]. Progress in Natural Science-Materials International, 2002, 12(7):528-536. |
[31] | 魏海涛, 李柯, 赫晓慧, 等. 融入空间关系的矩阵分解POI推荐模型[J]. 武汉大学学报(信息科学版), 2021, 46(5):681-690. |
WEI Haitao, LI Ke, HE Xiaohui, et al. Integrating spatial relationship into a matrix factorization model for POI recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5):681-690. | |
[32] | 陈杰, 戴欣宜, 周兴, 等. 双LSTM驱动的高分遥感影像地物目标空间关系语义描述[J]. 遥感学报, 2021, 25(5):1085-1094. |
CHEN Jie, DAI Xinyi, ZHOU Xing, et al. Semantic understanding of geo-objects’relationship in high resolution remote sensing image driven by dual LSTM[J]. National Remote Sensing Bulletin, 2021, 25(5):1085-1094. | |
[33] | GODARD C, MAC AODHA O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3828-3838. |
[34] | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11):1231-1237. |
[35] | FAROOQ BHAT S, ALHASHIM I, WONKA P. AdaBins: depth estimation using adaptive bins[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4008-4017. |
[36] | 徐守坤, 吉晨晨, 倪楚涵, 等. 融合施工场景及空间关系的图像描述生成模型[J]. 计算机工程, 2020, 46(6):256-265. |
XU Shoukun, JI Chenchen, NI Chuhan, et al. Image description generation model integrating construction scenes and spatial relationship[J]. Computer Engineering, 2020, 46(6):256-265. | |
[37] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223. |
[38] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[39] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1251-1258. |
[40] | SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5686-5696. |
[41] | MOHAN R, VALADA A. Amodal panoptic segmentation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 20991-21000. |
[42] | DAI Xiyang, CHEN Yinpeng, XIAO Bin, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7369-7378. |
[43] | 张继贤, 刘飞. 视觉SLAM环境感知技术现状与智能化测绘应用展望[J]. 测绘学报, 2023, 52(10):1617-1630. DOI: 10.11947/j.AGCS.2023.20220240. |
ZHANG Jixian, LIU Fei. Review of visual SLAM environment perception technology and intelligent surveying and mapping application[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10):1617-1630. DOI: 10.11947/j.AGCS.2023.20220240. |
[1] | Jun CHEN, Tinghua AI, Li YAN, Wanzeng LIU, Zhilin LI, Qiang ZHU, Jingxiang GAO, Hong XIE, Hao WU, Jun ZHANG. Hybrid computational paradigm and methods for intelligentized surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 985-998. |
[2] | REN Jiaxin, LIU Wanzeng, CHEN Jun, ZHANG Lan, TAO Yuan, ZHU Xiuli, ZHAO Tingting, LI Ran, ZHAI Xi, WANG Haiqing, ZHOU Xiaoguang, HOU Dongyang, WANG Yong. Knowledge-guided intelligent recognition of the scale for fragmented raster topographic maps [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 146-157. |
[3] | Lü Kefeng, ZHANG Yongsheng, YU Ying, MIN Jie. Instance object localization based on semantic information and geo-registration [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1375-1386. |
[4] | YANG Juntao, KANG Zhizhong. Multi-scale Features and Markov Random Field Model for Powerline Scene Classification [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 188-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||