Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (9): 1799-1816.doi: 10.11947/j.AGCS.2024.20230363
• Photogrammetry and Remote Sensing • Previous Articles
Mi WANG1(), Tengteng DONG1(), Tao PENG1, Shao XIANG1, Qiongqiong LAN1,2
Received:
2023-09-08
Published:
2024-10-16
Contact:
Tengteng DONG
E-mail:wangmi@whu.edu.cn;2022206190049@whu.edu.cn
About author:
WANG Mi (1974—), male, PhD, professor, PhD supervisor, majors in high-resolution optical satellite imagery data processing and intelligent service. E-mail: wangmi@whu.edu.cn
Supported by:
CLC Number:
Mi WANG, Tengteng DONG, Tao PENG, Shao XIANG, Qiongqiong LAN. Remote sensing image stripe noise removal model based on detail information constraints[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1799-1816.
Tab.1
Quantitative assessment of the five simulated data"
影像 | 指标 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|
噪声影像1 | IS | 1.325 13 | 6.077 10 | 0.986 62 | 1.840 28 | 0.881 21 | 14.370 89 | 0.993 05 |
IM | 0.000 13 | 0.001 17 | 0.000 08 | 0.000 19 | 0.000 05 | 0.002 98 | 0.000 01 | |
SSIM | 0.977 67 | 0.905 25 | 0.997 33 | 0.998 74 | 0.989 06 | 0.773 78 | 0.999 63 | |
噪声影像2 | IS | 1.215 80 | 3.183 34 | 1.650 13 | 1.739 21 | 0.757 49 | 10.378 90 | 0.978 89 |
IM | 0.000 23 | 0.001 19 | 0.000 39 | 0.000 40 | 0.000 13 | 0.005 07 | 0.000 01 | |
SSIM | 0.979 99 | 0.907 89 | 0.998 48 | 0.998 14 | 0.986 54 | 0.923 52 | 0.999 32 | |
噪声影像3 | IS | 2.749 15 | 4.099 88 | 2.591 54 | 1.946 61 | 0.863 16 | 15.347 40 | 0.973 95 |
IM | 0.001 50 | 0.002 49 | 0.001 43 | 0.000 77 | 0.000 22 | 0.028 61 | 0.000 03 | |
SSIM | 0.875 91 | 0.788 50 | 0.982 69 | 0.972 57 | 0.885 28 | 0.724 37 | 0.985 58 | |
噪声影像4 | IS | 6.609 29 | 6.718 18 | 1.673 47 | 1.813 51 | 0.842 48 | 6.222 32 | 0.953 44 |
IM | 0.006 59 | 0.005 90 | 0.000 76 | 0.001 02 | 0.000 35 | 0.005 21 | 0.000 16 | |
SSIM | 0.981 85 | 0.857 07 | 0.996 58 | 0.993 45 | 0.987 90 | 0.929 46 | 0.998 97 | |
噪声影像5 | IS | 2.235 93 | 19.599 77 | 1.891 68 | 1.650 29 | 0.749 28 | 22.744 06 | 1.101 17 |
IM | 0.001 20 | 0.016 38 | 0.000 81 | 0.000 86 | 0.000 35 | 0.048 87 | 0.000 32 | |
SSIM | 0.974 46 | 0.880 79 | 0.995 36 | 0.981 21 | 0.967 33 | 0.815 50 | 0.995 67 |
Tab.2
Quantitative evaluation of simulated data at different noise levels"
影像 | 指标 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|
测试影像1 | IS | 1.325 13 | 6.077 10 | 0.986 62 | 1.840 28 | 0.881 21 | 14.370 89 | 0.993 05 |
IM | 0.000 13 | 0.001 17 | 0.000 09 | 0.000 19 | 0.000 05 | 0.002 99 | 0.000 01 | |
SSIM | 0.977 67 | 0.905 25 | 0.997 33 | 0.998 74 | 0.989 06 | 0.773 78 | 0.999 63 | |
测试影像2 | IS | 1.136 28 | 4.365 11 | 0.918 53 | 1.328 23 | 0.701 87 | 9.796 84 | 0.980 72 |
IM | 0.000 15 | 0.001 12 | 0.000 11 | 0.000 11 | 0.000 19 | 0.002 99 | 0.000 01 | |
SSIM | 0.976 84 | 0.890 30 | 0.995 98 | 0.998 68 | 0.961 72 | 0.773 92 | 0.999 31 | |
测试影像3 | IS | 0.973 98 | 4.225 19 | 0.709 79 | 1.018 74 | 0.817 20 | 6.185 95 | 0.989 26 |
IM | 0.000 11 | 0.001 85 | 0.000 05 | 0.000 04 | 0.000 30 | 0.002 98 | 0.000 02 | |
SSIM | 0.973 98 | 0.883 26 | 0.994 00 | 0.997 32 | 0.933 51 | 0.773 83 | 0.998 15 | |
测试影像4 | IS | 1.491 04 | 2.413 47 | 1.108 92 | 1.481 22 | 0.724 29 | 4.399 20 | 0.952 36 |
IM | 0.000 62 | 0.001 40 | 0.000 42 | 0.000 50 | 0.000 46 | 0.003 00 | 0.000 06 | |
SSIM | 0.973 07 | 0.891 89 | 0.991 35 | 0.990 16 | 0.905 62 | 0.773 74 | 0.992 53 | |
测试影像5 | IS | 1.064 84 | 2.566 63 | 0.797 23 | 1.097 03 | 0.729 26 | 3.992 92 | 0.940 76 |
IM | 0.000 27 | 0.001 61 | 0.000 20 | 0.000 19 | 0.000 53 | 0.003 00 | 0.000 07 | |
SSIM | 0.970 85 | 0.897 71 | 0.989 06 | 0.989 22 | 0.892 17 | 0.773 49 | 0.990 71 |
Tab.4
Comparison of denoising ability and information retention ability of different algorithms"
影像 | 指标 | 噪声影像 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|---|
真实噪声影像1 | δ | 138.855 94 | 147.801 22 | 137.872 99 | 137.164 33 | 138.678 79 | 142.138 95 | 106.009 90 | 139.651 91 |
PSNR | 56.996 71 | 66.197 22 | 56.099 15 | 69.571 66 | 65.311 47 | 62.086 04 | 57.844 93 | 69.900 19 | |
SSIM | 0.854 24 | 0.979 09 | 0.945 11 | 0.993 16 | 0.989 97 | 0.932 50 | 0.843 57 | 0.993 47 | |
H | 6.604 80 | 6.560 11 | 6.431 75 | 6.555 04 | 6.575 33 | 6.564 55 | 6.427 18 | 6.593 57 | |
NR | 0 | 0.920 62 | 1.413 41 | 1.124 26 | 1.390 46 | 1.115 73 | 1.339 22 | 1.391 13 | |
真实噪声影像2 | δ | 323.049 52 | 328.230 63 | 316.036 46 | 316.548 27 | 323.549 80 | 319.592 59 | 265.940 65 | 323.565 86 |
PSNR | 63.470 20 | 65.751 399 | 63.119 75 | 65.701 25 | 67.668 15 | 65.892 48 | 63.351 93 | 74.613 66 | |
SSIM | 0.995 52 | 0.977 38 | 0.973 21 | 0.976 60 | 0.999 50 | 0.976 89 | 0.900 98 | 0.999 68 | |
H | 6.370 75 | 6.372 71 | 6.336 83 | 6.372 033 | 6.372 56 | 6.365 75 | 6.200 99 | 6.374 60 | |
NR | 0 | 0.939 95 | 1.202 94 | 0.958 07 | 1.096 46 | 1.041 65 | 1.072 50 | 1.116 32 |
[1] | SHEN Huanfeng, HUANG Liwen, ZHANG Liangpei, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125. |
[2] | LI Xiaotong, ZHAO Xile, JIANG Taixiang, et al. Low-rank tensor completion via combined non-local self-similarity and low-rank regularization[J]. Neurocomputing, 2019, 367:1-12. |
[3] | DING Meng, HUANG Tingzhu, JI Tengyu, et al. Low-rank tensor completion using matrix factorization based on tensor train rank and total variation[J]. Journal of Scientific Computing, 2019, 81(2):941-964. |
[4] | ACITO N, DIANI M, CORSINI G. Subspace-based striping noise reduction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1325-1342. |
[5] | KAMIRU L, HAKIM P R, HASBI W. An adaptive stripe noise removal algorithm for optical satellite imagery[C]//Proceedings of 2019 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology. Yogyakarta: IEEE, 2019: 1-7. |
[6] | JIANG Hongxu, MIAO Rui, CHEN Jiao, et al. A resource-efficient parallel architecture for infrared image stripe noise removal based on the most stable window[J]. Infrared Physics & Technology, 2019, 97:258-269. |
[7] | 李文力, 李凯, 彭迪, 等. AGRI遥感图像中条带噪声的分析与去除[J]. 光学学报, 2019, 39(12):1228004. |
LI Wenli, LI Kai, PENG Di, et al. Analysis and removal of stripe noise in AGRI remote-sensing images[J]. Acta Optica Sinica, 2019, 39(12):1228004. | |
[8] | CUI Hao, JIA Peng, ZHANG Guo, et al. Multiscale intensity propagation to remove multiplicative stripe noise from remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2308-2323. |
[9] | QU Yufu, ZHANG Xuan, WANG Qianyi, et al. Extremely sparse stripe noise removal from non remote-sensing images by straight line detection and neighborhood grayscale weighted replacement[J]. IEEE Access, 2018, 6:76924-76934. |
[10] | QU Xiaofei, ZHAO Weiwei, LONG En, et al. Removal of stripes in remote sensing images based on statistics combined with image enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1):76-87. |
[11] | 张霞, 孙伟超, 帅通, 等. 基于小波变换的图像条带噪声去除方法[J]. 遥感技术与应用, 2015, 30(6):1168-1175. |
ZHANG Xia, SUN Weichao, SHUAI Tong, et al. Image destriping method based on wavelet transform[J]. Remote Sensing Technology and Application, 2015, 30(6):1168-1175. | |
[12] | LI M, NONG S, NIE T, et al. An infrared stripe noise removal method based on multi-scale wavelet transform and multi-nomial sparse representation[J]. Computational Intelligence and Neuroscience, 2022:4044071. |
[13] | SHAO Yuyi, SUN Yingwei, ZHAO Mengmeng, et al. Infrared image stripe noise removing using least squares and gradient domain guided filtering[J]. Infrared Physics & Technology, 2021, 119:103968. |
[14] | 陈劲松, 邵芸, 朱博勤. 中分辨率遥感图像条带噪声的去除[J]. 遥感学报, 2004(3):227-233. |
CHEN Jinsong, SHAO Yun, ZHU Boqin. Removal of strip noise from medium-resolution remote sensing images[J]. Journal of Remote Sensing, 2004(3):227-233. | |
[15] | FAYYAZ Z, PLATNICK D, FAYYAZ H, et al. Deep unfolding for iterative stripe noise removal[C]//Prcoceedings of 2022 International Joint Conference on Neural Networks. Padua: IEEE, 2022: 1-7. |
[16] | GUAN Juntao, LAI Rui, XIONG Ai. Wavelet deep neural network for stripe noise removal[J]. IEEE Access, 2019, 7:44544-44554. |
[17] | BOUALI M, LADJAL S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8):2924-2935. |
[18] | LIU Na, LI Wei, TAO Ran, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):10310-10321. |
[19] | CHEN Yong, HUANG Tingzhu, ZHAO Xile. Destriping of multispectral remote sensing image using low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):4950-4967. |
[20] | WANG Ende, JIANG Ping, LI Xuepeng, et al. Infrared stripe correction algorithm based on wavelet decomposition and total variation-guided filtering[J]. Journal of the European Optical Society-Rapid Publications, 2020, 16:1. |
[21] | ZHAO Shuheng, YUAN Qiangqiang, LI Jie, et al. A fast and effective irregular stripe removal method for moon mineralogy mapper (M3)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-19. |
[22] | WANG Chang, ZHANG Yongsheng, WANG Xu, et al. An effective strip noise removal method for remote sensing image[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4):72-85. |
[23] | 王昶, 王旭, 纪松. 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53(3):143-149. |
WANG Chang, WANG Xu, JI Song. Stripe noise removal of remote images based on variation[J]. Journal of Xi'an Jiaotong University, 2019, 53(3):143-149. | |
[24] | 陈柳, 陈明举, 吴浩, 等. 一种群稀疏限制的消除条带噪声变分模型[J]. 液晶与显示, 2020, 35(6):604-611. |
CHEN Liu, CHEN Mingju, WU Hao, et al. Variation model with group sparsity constraint for stripe noise removal[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(6):604-611. | |
[25] | 李凯, 李文力, 韩昌佩. 基于L1范数优化模型的遥感图像条纹去除方法[J]. 红外与毫米波学报, 2021, 40(2):272-283. |
LI Kai, LI Wenli, HAN Changpei. Remote sensing image stripe removal method based on L1-paradigm optimization model[J]. Journal of Infrared and Millimeter Wave, 2021, 40(2):272-283. | |
[26] | CHANG Yi, YAN Luxin, WU Tao, et al. Remote sensing image stripe noise removal: from image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7018-7031. |
[27] | ZHANG Shengwei, XIANG Wei, XU Baoshu, et al. Stripe noise removal for infrared images using guided filter[C]//Proceedings of 2016 Infrared Technology and Applications, and Robot Sensing and Advanced Control. Beijing: SPIE, 2016: 665-673. |
[28] | 鞠荟荟, 刘志刚, 姜江军, 等. 基于低通滤波残差图的高光谱条带噪声去除[J]. 光学学报, 2018, 38(12):361-369. |
JU Huihui, LIU Zhigang, JIANG Jiangjun, et al. Hyperspectral stripe noise removal based on low-pass filtered residual map[J]. Journal of Optics, 2018, 38(12):361-369. | |
[29] | REN Longfei, HONG Danfeng, GAO Lianru, et al. Orthogonal subspace unmixing to address spectral variability for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-13. |
[30] | REN Longfei, WANG Chengjing, TANG Peipei, et al. A dual symmetric Gauss-Seidel alternating direction method of multipliers for hyperspectral sparse unmixing[J]. Numerical Algorithms, 2021, 87(2):719-754. |
[31] | REN Longfei, MA Zheng, BOVOLO F, et al. Hyperspectral unmixing using weighted sparse regression with total variation regularization[J]. International Journal of Remote Sensing, 2022, 43(15/16):6124-6151. |
[32] | YANG Jinghua, ZHAO Xile, MA Tianhui, et al. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization[J]. Journal of Computational and Applied Mathematics, 2020, 363:124-144. |
[33] | CHEN Yong, HUANG Tingzhu, ZHAO Xile, et al. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint[J]. Remote Sensing, 2017, 9(6):559. |
[1] | Jia LI, Limin JIAO. Refined accounting and spatio-temporal characteristics of land use carbon budget [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1480-1492. |
[2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[3] | Yibo XING, Bin HAN, Bingkun BAO. River SAR image segmentation using L1 norm based hybrid active contours [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1598-1609. |
[4] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
[5] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
[6] | Keru LU. Development of a UV-based remote sensing technology for sulphur dioxide monitoring from ship emissions [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1658-1658. |
[7] | Wenfei XI. Evaluation of landslide hazard risk rating based on bipolar fuzzy set evaluation method——take Ludian county as an example [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1661-1661. |
[8] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[9] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[10] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[11] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[12] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[13] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[14] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[15] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||