[1] COLLINS J P, LANGLEY R B. A Tropospheric Delay Model for the User of the Wide Area Augmentation System[R]. Final Contract Report for Nav Canada, Department of Geodesy and Geomatics Engineering Technical Report No.187. Fredericton:University of New Brunswick, 1997.
[2] COLLINS J P, LANGLEY R B. The Residual Tropospheric Propagation Delay:How Bad Can It Get?[C]//Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville, Tennessee:[s.n.], 1998.
[3] MOPS W. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment[R]. Documentation No. RTCA/DO-229B. Washington:RTCA Inc., 1999:6.
[4] PENNA N, DODSON A, CHEN Wu. Assessment of EGNOS Tropospheric Correction Model[J]. The Journal of Navigation, 2001, 54(1):37-55.
[5] UENO M, HOSHINOO K, MATSUNAGA K, et al. Assessment of Atmospheric Delay Correction Models for the Japanese MSAS[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation. Salt Lake City, UT:[s.n.], 2001.
[6] KRUEGER E, SCHVELER T, HEIN G W, et al. Galileo Tropospheric Correction Approaches Developed within GSTB-V1[C]//Proceedings of 2004 ENC-GNSS. Rotterdam:[s.n.], 2004.
[7] BOEHM J, HEINKELMANN R, SCHUH H. Short Note:A Global Model of Pressure and Temperature for Geodetic Applications[J]. Journal of Geodesy, 2007, 81(10):679-683.
[8] KOUBA J. Testing of Global Pressure/Temperature (GPT) Model and Global Mapping Function (GMF) in GPS Analyses[J]. Journal of Geodesy, 2009, 83(3-4):199-208.
[9] PETIT G, LUZUM B. IERS Conventions (2010)[R]. IERS Technical Note 36. Frankfurt am Main:IERS, 2010:1-95.
[10] 陈澍, 熊永良, 张绪丰, 等. GPS水汽反演技术在四川地区的应用研究[J]. 全球定位系统, 2011, 36(1):32-37. CHEN Shu, XIONG Yongliang, ZHANG Xufeng, et al. Application of GPS Water Vapor Inversion Technology in Sichuan Area[J]. Gnss World of China, 2011, 36(1):32-37.
[11] 鄢子平, 吕翠仙, 何锡扬, 等. 基于PPP的对流层延迟估计方法及其影响因素分析[J]. 大地测量与地球动力学, 2011, 31(2):107-110, 116. YAN Ziping, LÜ Cuixian, HE Xiyang, et al. Estimation of Zenith Path Delay Based on PPP and Analysis of Its Influence Factor[J]. Journal of Geodesy and Geodynamics, 2011, 31(2):107-110, 116.
[12] 于胜杰, 万蓉, 付志康. 气压对GPS大气可降水量解算的影响分析[J]. 大地测量与地球动力学, 2013, 33(2):87-90, 95. YU Shengjie, WAN Rong, FU Zhikang. Impact Analysis of Pressure Parameter on Inversion of GPS Precipitable Water Vapor[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):87-90, 95.
[13] 杨徉, 喻国荣, 潘树国, 等. 一种综合的对流层延迟模型算法[J]. 东南大学学报(自然科学版), 2013, 43(S2):418-422. YANG Yang, YU Guorong, PAN Shuguo, et al. A Comprehensive Algorithm Using Fusion of Tropospheric Delay Models[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S2):418-422.
[14] 王君刚, 陈俊平, 王解先. 对流层模型在中国区域的精度评估[C]//2014年中国地球科学联合学术年会——专题26:卫星导航技术及其在地球科学应用论文集. 北京:中国地球物理学会, 2014. WANG Jungang, CHEN Junping, WANG Jiexian. Accuracy Assessment of the Troposphere Model in China[C]//Annual meeting of Chinese Geoscience Union (CGU). Beijing:Chinese Geophysical Society, 2014.
[15] LI Wei, YUAN Yunbin, OU Jikun, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17):2132-2139.
[16] LI Wei, YUAN Yunbin, OU Jikun, et al. New Versions of the BDS/GNSS Zenith Tropospheric Delay Model IGGtrop[J]. Journal of Geodesy, 2015, 89(1):73-80.
[17] LAGLER K,SCHINDELEGGER M, BÖHM J, et al. GPT2:Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6):1069-1073.
[18] SCHVLER T. The Trop Grid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1):123-131.
[19] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441.
[20] 姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7):726-733. DOI:10.11947/j.AGCS.2015.20140356. YAO Yibin, CAO Na, XU Chaoqian, et al. Accuracy Assessment and Analysis for GPT2[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):726-733. DOI:10.11947/j.AGCS.2015.20140356.
[21] 范士杰, 臧建飞, 刘焱雄, 等. GPT/2模型用于GPS大气可降水汽反演的精度分析[J]. 测绘工程, 2016, 25(3):1-5. FAN Shijie, ZANG Jianfei, LIU Yanxiong, et al. Accuracy Analysis on GPS Precipitable Water Vapor Inversion Using GPT/2 Models[J]. Engineering of Surveying and Mapping, 2016, 25(3):1-5.
[22] 王君刚, 陈俊平, 王解先, 等. 对流层经验改正模型在中国区域的精度评估[J]. 武汉大学学报(信息科学版), 2016, 41(12):1656-1663. WANG Jungang, CHEN Junping, WANG Jiexian, et al. Assessment of Tropospheric Delay Correction Models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12):1656-1663.
[23] HOPFIELD H S. Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data[J]. Journal of Geophysical Research, 1969, 74(18):4487-4499.
[24] SAASTAMOINEN J. Contributions to the Theory of Atmospheric Refraction[J]. Bulletin Géodésique (1946-1975), 1972, 105(1):279-298.
[25] IFADIS I I. The Atmospheric Delay of Radio Waves:Modeling the Elevation Dependence on a Global Scale[R]. Technical Report No. 38L. G teburg, Sweden:Chalmers University of Technology, 1986.
[26] ASKNE J, NORDIUS H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J]. Radio Science, 1987, 22(3):379-386.
[27] 曲伟菁, 朱文耀, 宋淑丽, 等. 三种对流层延迟改正模型精度评估[J]. 天文学报, 2008, 49(1):113-122. QU Weijing, ZHU Wenyao, SONG Shuli, et al. The Evaluation of Precision about Hopfield, Saastamoinen and Egnos Tropospheric Delay Correction Model[J]. Acta Astronomica Sinica, 2008, 49(1):113-122.
[28] MARINI J W. Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile[J]. Radio Science, 1972, 7(2):223-231.
[29] HERRING T A. Modeling Atmospheric Delays in the Analysis of Space Geodetic Data[M]//DEMUNKAND J C, SPOELSTRA T A. Refraction of Transatmospheric Signals in Geodesy, Number 36. The Hague, Netherlands:Netherlands Geodetic Commission Publications in Geodesy, 1992:157-164.
[30] NIELL A E. Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B2):3227-3246.
[31] NIELL A E. Preliminary Evaluation of Atmospheric Mapping Functions Based on Numerical Weather Models[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001, 26(6-8):475-480.
[32] BOEHM J, WERL B, SCHUH H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02406. DOI:10.1029/2005JB003629.
[33] JIANG Weiping, ZOU Xuan. On Error of Atmospheric Models in GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11):1106-1109, 1197.
[34] BOEHM J, NIELL A, TREGONING P, et al. Global Mapping Function (GMF):A New Empirical Mapping Function Based on Numerical Weather Model Data[J]. Geophysical Research Letters, 2006, 33(7):L07304.
[35] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 2013, 20(23):2631-2634.
[36] TAO W. Near real-time GPS PPP-inferred water vapor system development and evaluation[D]. Calgary:University of Calgary, 2008.
[37] 叶世榕, 张双成, 刘经南. 精密单点定位方法估计对流层延迟精度分析[J]. 武汉大学学报(信息科学版), 2008, 33(8):788-791. YE Shirong, ZHANG Shuangcheng, LIU Jingnan. Precision Analysis of Precise Point Positioning Based Tropospheric Delay Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):788-791.
[38] 王敏, 柴洪洲, 谢恺, 等. 基于CNES实时轨道钟差数据反演大气可降水量[J]. 大地测量与地球动力学, 2013, 33(1):137-140. WANG Min, CHAI Hongzhou, XIE Kai, et al. PWV Inversion Based on CNES Real-time Orbits and Clocks[J]. Journal of Geodesy and Geodynamics, 2013, 33(1):137-140.
[39] DAI L. Augmentation of GPS with GLONASS and Pseudolite Signals for Carrier Phase-based Kinematic Positioning[D]. Sydney:University of New South Wales, 2002.
[40] XIONG Yongliang, HUANG Dingfa, DING Xiaoli, et al. Research on the Modeling of Tropospheric Delay in Virtual Reference Station[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2):118-121. DOI:10.3321/j.issn:1001-1595.2006.02.005.
[41] ZHANG Xiaohong, ZHU Feng, LI Pan, et al. Zenith Troposphere Delay Interpolation Model for Regional CORS Network Augmented PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6):679-683.
[42] BEVIS M, BUSINGER S, HERRING T A, et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801.
[43] DUAN Jingping, BEVIS M, FANG Peng, et al. GPS Meteorology:Direct Estimation of the Absolute Value of Precipitable Water[J]. Journal of Applied Meteorology, 1996, 35(6):830-838.
[44] ELGERED G, JOHANSSON J M, RÖNNÄNG B, et al. Measuring Regional Atmospheric Water Vapor Using the Swedish Permanent GPS Network[J]. Geophysical Research Letters, 1997, 24(21):2663-2666.
[45] 刘焱雄, IZ H B, 陈永奇. 地基GPS技术遥感香港地区大气水汽含量[J]. 武汉测绘科技大学学报, 1999, 24(3):245-248. LIU Yanxiong, IZ H B, CHEN Yongqi. Monitoring the Water Vapor Content in the Atmosphere in Hong Kong Through Ground-Based GPS Technique[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1999, 24(3):245-248.
[46] 程晓, 徐冠华, 周春霞, 等. 应用GPS资料反演南极大气可降水量的试验分析[J]. 极地研究, 2002, 14(2):136-144. CHENG Xiao, XU Guanhua, ZHOU Chunxia, et al. Application of GPS Technology to Meteorology in Antarctic[J]. Chinese Journal of Polar Research, 2002, 14(2):136-144.
[47] 毕研盟. 应用全球定位系统(GPS)遥感大气水汽的研究[D]. 北京. 北京大学, 2006:58-63. BI Yanmeng. Research of Remote Sensing of Atmospheric Water Vapor Using Global Positioning System (GPS)[D]. Beijing:Peking University, 2006:58-63.
[48] 张双成, 刘经南, 叶世榕, 等. 顾及双差残差反演GPS信号方向的斜路径水汽含量[J]. 武汉大学学报(信息科学版), 2009, 34(1):100-104. ZHANG Shuangcheng, LIU Jingnan, YE Shirong, et al. Retrieval of Water Vapor along the GPS Slant Path Based on Double-differenced Residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1):100-104.
[49] 范士杰, 刘焱雄, 高兴国, 等. 顾及星间单差残差的GPS斜路径水汽含量估计[J]. 武汉大学学报(信息科学版), 2012, 37(7):834-838. FAN Shijie, LIU Yanxiong, GAO Xingguo, et al. Estimate of GPS Slant-path Water Vapor Based on Single-differenced Residuals between Satellites[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):834-838.
[50] ADAMS D K, FERNANDES R M S, MAIA J M F. GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(10):1192-1198.
[51] WARE R, ALBER C, ROCKEN C, et al. Sensing Integrated Water Vapor Along GPS Ray Paths[J]. Geophysical Research Letters, 1997, 24(4):417-420.
[52] 郭巍, 尹球, 杜明斌, 等. 利用地基北斗站反演大气水汽总量的精度检验[J]. 应用气象学报, 2015, 26(3):346-353. GUO Wei, YIN Qiu, DU Mingbin. The Accuracy Test of Retrieved Precipitation Water Vapor Based on BeiDou Observations[J]. Journal of Applied Meteorological Science, 2015, 26(3):346-353.
[53] 施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(3):285-289. SHI Chuang, WANG Haishen, CAO Yunchang, et al. Analysis on Performance of Water Vapor Detection Based on BeiDou Satellite[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):285-289.
[54] BRAUN J, ROCKEN C, MEERTENS C, et al. Development of a Water Vapor Tomography System Using Low Cost L1 GPS Receivers[C]//Proceedings of the 9th ARM Science Team Meeting. San Antonio, Texas:US Department of Energy, 1999:22-26.
[55] FLORES A, RUFFINI G, RIUS A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2):223-234.
[56] TROLLER M, BüRKI B, COCARD M, et al. 3D Refractivity Field from GPS Double Difference Tomography[J]. Geophysical Research Letters, 2002, 29(24):21-24.
[57] CAO Yunchang, CHEN Yongqi, LI P. Wet Refractivity Tomography with An Improved Kalman-Filter Method[J]. Advances in Atmospheric Sciences, 2006, 23(5):693-699.
[58] 王久珂, 刘晓阳, 毛节泰, 等. GPS蒙特卡罗三维水汽层析算法敏感性试验和研究[J]. 北京大学学报(自然科学版), 2014, 50(6):1044-1052. WANG Jiuke, LIU Xiaoyang, MAO Jietai, et al. Sensitivity Experiment of Monte Carlo Tomography Algorithm of Water Vapor Using GPS Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6):1044-1052.
[59] 曹玉静, 刘晶淼, 廖荣伟, 等. 两种垂直分层方法对GPS水汽层析结果的影响[J]. 气象与环境学报, 2014, 30(6):125-133. CAO Yujing, LIU Jingmiao, LIAO Rongwei, et al. Effect of Two Vertical Stratification Methods of GPS Tomography Grid on GPS Water Vapor Tomography Result[J]. Journal of Meteorology and Environment, 2014, 30(6):125-133.
[60] BENDER M, RAABE A. Preconditions to Ground Based GPS Water Vapour Tomography[J]. Annales Geophysicae, 2007, 25(8):1727-1734.
[61] BENDER M, STOSIUS R, ZUS F, et al. GNSS Water Vapour Tomography-expected Improvements by Combining GPS, GLONASS and Galileo Observations[J]. Advances in Space Research, 2011, 47(5):886-897.
[62] 夏朋飞, 蔡昌盛, 戴吾蛟, 等. 地基GPS联合COSMIC掩星数据的水汽三维层析研究[J]. 武汉大学学报(信息科学版), 2013, 38(8):892-896. XIA Pengfei, CAI Changsheng, DAI Wujiao, et al. Three-dimensional Water Vapor Tomography Using Ground-based GPS and COSMIC Occultation Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8):892-896.
[63] ALSHAWAF F. Constructing Water Vapor Maps by Fusing InSAR, GNSS and WRF Data[D]. Karlsruhe, Germany:Karlsruher Institute of Technology, 2013.
[64] HEUBLEIN M, ZHU Xiaoxiang, ALSHAWAF F, et al. Compressive Sensing for Neutrospheric Water Vapor Tomography Using GNSS and InSAR Observations[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy:IEEE, 2015:5268-5271.
[65] BENEVIDES P, NICO G, CATALAO J, et al. Merging SAR Interferometry and GPS Tomography for High-resolution Mapping of 3D Tropospheric Water Vapour[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy:IEEE, 2015:3607-3610.
[66] HIRAHARA K. Local GPS Tropospheric Tomography[J]. Earth, Planets and Space, 2000, 52(11):935-939.
[67] MⅡDLA P, RANNAT K, UBA P. A Mathematical Model of Troposphere Water Vapor Tomography[C]//Proceedings of the 2nd International Conference on Environmental and Computer Science. Dubai, United Arab Emirates:IEEE, 2009:183-187.
[68] MⅡDLA P, RANNAT K, UBA P. Tomographic Approach for Tropospheric Water Vapor Detection[J]. Computational Methods in Applied Mathematics, 2008, 8(3):263-278.
[69] 宋淑丽, 朱文耀, 廖新浩. 地基GPS气象学研究的主要问题及最新进展[J]. 地球科学进展, 2004, 19(2):250-259. SONG Shuli, ZHU Wenyao, LIAO Xinhao. The Main Problems and New Advances in Ground-based GPS Meteorology[J]. Advance in Earth Sciences, 2004, 19(2):250-259.
[70] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院(上海天文台), 2004. SONG Shuli. Sensing Three Dimensional Water Vapor Structure with Ground-based GPS Network and the Application in Meteorology[D]. Shanghai:Shanghai Astronomical Observatory (Chinese Academy of Science), 2004.
[71] 宋淑丽, 朱文耀, 丁金才, 等. 上海GPS网层析水汽三维分布改善数值预报湿度场[J]. 科学通报, 2005, 50(20):2271-2277. SONG Shuli, ZHU Wenyao, DING Jincai, et al. 3D Water-vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field[J]. Chinese Science Bulletin, 2006, 50(20):607-614.
[72] BRAUN J, ROCKEN C, LILJEGREN J. Comparisons of Line-of-sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5):606-612.
[73] BRAUN J J. Remote Sensing of Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 2004, 20(23):2631-2634.
[74] PERLER D, GEIGER A, HURTER F. 4D GPS Water Vapor Tomography:New Parameterized Approaches[J]. Journal of Geodesy, 2011, 85(8):539-550.
[75] 张双成, 叶世榕, 万蓉, 等. 基于Kalman滤波的断层扫描初步层析水汽湿折射率分布[J]. 武汉大学学报(信息科学版), 2008, 33(8):796-799. ZHANG Shuangcheng, YE Shirong, WAN Rong, et al. Preliminary Tomography Spatial Wet Refractivity Distribution Based on Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):796-799.
[76] 毕研盟, 杨光林, 聂晶. 基于Kalman滤波的GPS水汽层析方法及其应用[J]. 高原气象, 2011, 30(1):109-114. BI Yanmeng, YANG Guanglin, NIE Jing. Method of GPS Water Vapor Tomography Based on Kalman Filter and Its Application[J]. Plateau Meteorology, 2011, 30(1):109-114.
[77] 王维, 王解先. 基于代数重构技术的对流层水汽层析[J]. 计算机应用, 2011, 31(11):3149-3151, 3156. WANG Wei, WANG Jiexian. Ground-based GPS Water Vapor Tomography Based on Algebraic Reconstruction Technique[J]. Journal of Computer Applications, 2011, 31(11):3149-3151, 3156.
[78] 于胜杰, 柳林涛. 利用选权拟合法进行GPS水汽层析解算[J]. 武汉大学学报(信息科学版), 2012, 37(2):183-186, 204. YU Shengjie, LIU Lintao. Application of Fitting Method by Selection of the Parameter Weights on GPS Water Vapor Tomography[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2):183-186, 204.
[79] 江鹏, 叶世榕, 何书镜, 等. 自适应Kalman滤波用于GPS层析大气湿折射率[J]. 武汉大学学报(信息科学版), 2013, 38(3):299-302. JIANG Peng, YE Shirong, HE Shujing, et al. Ground-based GPS Tomography of Wet Refractivity with Adaptive Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3):299-302.
[80] 叶世榕, 江鹏, 刘炎炎. 地基GPS网层析水汽三维分布数值积分方法[J]. 测绘学报, 2013, 42(5):654-660. YE Shirong, JIANG Peng, LIU Yanyan. A Water Vapor Tomographic Numerical Quadrature Approach with Ground-based GPS Network[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):654-660.
[81] 张双成, 张鹏飞, 张勤, 等. 顾及抗差方差分量的地基GPS层析水汽空间分布算法研究[J]. 武汉大学学报(信息科学版), 2013, 38(2):144-147. ZHANG Shuangcheng, ZHANG Pengfei, ZHANG Qin, et al. Ground-based GPS Tomography Spatial Water Vapor Distribution with Robust Variance Components Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):144-147.
[82] WANG Xiaoying, DAI Ziqiang, ZHANG Enhong, et al. Tropospheric Wet Refractivity Tomography Using Multiplicative Algebraic Reconstruction Technique[J]. Advances in Space Research, 2014, 53(1):156-162.
[83] 何林, 柳林涛, 苏晓庆, 等. 水汽层析代数重构算法[J]. 测绘学报, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308. HE Lin, LIU Lintao, SU Xiaoqing, et al. Algebraic Reconstruction Algorithm of Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):32-38. DOI:10.11947/j.AGCS.2015.20130308.
[84] NILSSON T, GRADINARSKY L. Water Vapor Tomography Using GPS Phase Observations:Simulation Results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2927-2941.
[85] 曹玉静, 刘晶淼, 梁宏, 等. 基于地基GPS层析大气水汽资源的方法研究[J]. 自然资源学报, 2010, 25(10):1786-1796. CAO Yujing, LIU Jingmiao, LIANG Hong, et al. Progress in Ground-based GPS Tomographying Atmospheric Water Vapor Resource[J]. Journal of Natural Resources, 2010, 25(10):1786-1796.
[86] CHEN Biyan, LIU Zhizhao. Voxel-optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. Journal of Geodesy, 2014, 88(7):691-703.
[87] YAO Yibin, ZHAO Qingzhi. Maximally Using GPS Observation for Water Vapor Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7185-7196.
[88] YAO Y B, ZHAO Q Z, ZHANG B. A Method to Improve the Utilization of GNSS Observation for Water Vapor Tomography[J]. Annales Geophysicae, 2016, 34(1):143-152.
[89] YAO Yibin, ZHAO Qingzhi. A Novel, Optimized Approach of Voxel Division for Water Vapor Tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1):57-70.
[90] LANYI G E, ROTH T. A Comparison of Mapped and Measured Total Ionospheric Electron Content Using Global Positioning System and Beacon Satellite Observations[J]. Radio Science, 1988, 23(4):483-492.
[91] YUAN Y, TSCHERNING C C, KNUDSEN P, et al. The Ionospheric Eclipse Factor Method (IEFM) and Its Application to Determining the Ionospheric Delay for GPS[J]. Journal of Geodesy, 2008, 82(1):1-8.
[92] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC Maps:A Reliable Source of Ionospheric Information Since 1998[J]. Journal of Geodesy, 2009, 83(3-4):263-275.
[93] ALIZADEH M M, SCHUH H, TODOROVA S, et al. Global Ionosphere Maps of VTEC from GNSS, Satellite Altimetry, and Formosat-3/COSMIC Data[J]. Journal of Geodesy, 2011, 85(12):975-987.
[94] LI Zishen, YUAN Yunbin, LI Hui, et al. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11):1059-1076.
[95] LI Zishen, YUAN Yunbin, WANG Ningbo, et al. SHPTS:Towards A New Method for Generating Precise Global Ionospheric TEC Map Based on Spherical Harmonic and Generalized Trigonometric Series Functions[J]. Journal of Geodesy, 2015, 89(4):331-345.
[96] CHEN Peng, YAO Yibin, YAO Wanqiang. Global Ionosphere Maps Based on GNSS, Satellite Altimetry, Radio Occultation and DORIS[J]. GPS Solutions, 2017, 21(2):639-650. DOI:10.1007/s10291-016-0554-9.
[97] MANNUCCI A J, WILSON B D, YUAN D N, et al. A Global Mapping Technique for GPS-Derived Ionospheric Total Electron Content Measurements[J]. Radio Science, 1998, 33(3):565-582.
[98] ORUÚS R, HERNÁNDEZ-PAJARES M, JUAN J M, et al. Current Status and Expected Improvements of Ionospheric Reprocessing[M]. Darmstadt:IGS Workshop, 2006.
[99] SCHAER S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Switzerland:University of Berne, 1999:59.
[100] ZHANG Hongping, XU Peiliang, HANWenhui, et al. Eliminating Negative VTEC in Global Ionosphere Maps Using Inequality-Constrained Least Squares[J]. Advances in Space Research, 2013, 51(6):988-1000.
[101] TODOROVA S, SCHUH H, HOBIGER T, et al. Global Models of the Ionosphere Obtained by Integration of GNSS and Satellite Altimetry Data[J]. Vermessung & Geoinformation, 2007, 2:80-89.
[102] DETTMERING D, SCHMIDT M, HEINKELMANN R, et al. Combination of Different Space-geodetic Observations for Regional Ionosphere Modeling[J]. Journal of Geodesy, 2011, 85(12):989-998.
[103] CHEN Peng, YAO Wenqiang, ZHU Xunjun. Combination of Ground and Space-based Data to Establish a Global Ionospheric Grid Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1073-1081.
[104] AUSTEN J R, FRANKE S J, LIU C H, et al. Application of Computerized Tomography Techniques to Ionospheric Research[C]//International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop. Oulu, Finland:University of Oulu, 1986:25-35.
[105] HANSEN A J, WALTER T, ENGE P. Ionospheric Correction Using Tomography[C]//Proceedings of Institute of Navigation ION GPS-97. Kansas City:[s.n.], 1997:249-257.
[106] HANSEN A J. Real-Time Ionospheric Tomography Using Terrestrial GPS Sensors[C]//Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation. Nashville, TN:[s.n.], 1998:717-727.
[107] 耿长江. 利用地基GNSS数据实时监测电离层延迟理论与方法研究[D]. 武汉:武汉大学, 2011. GENG Changjiang. Theory and Method on Real Time Monitoring of Ionospheric Delay Using Ground Based GNSS Data[D]. Wuhan:Wuhan University, 2011.
[108] AMERIAN Y, HOSSAINALI M M, VOOSOGHI B. Regional Improvement of IRI Extracted Ionospheric Electron Density by Compactly Supported Base Functions Using GPS Observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013(92):23-30.
[109] KONG Jian, YAO Yibin, LIU Lei, et al. A New Computerized Ionosphere Tomography Model Using the Mapping Function and an Application to the Study of Seismic-ionosphere Disturbance[J]. Journal of Geodesy, 2016, 90(8):741-755.
[110] RIUS A, RUFFINI G, CUCURULL L. Improving the Vertical Resolution of Ionospheric Tomography with GPS Occultations[J]. Geophysical Research Letters, 1997, 24(18):2291-2294.
[111] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. Global Observation of the Ionospheric Electronic Response to Solar Events Using Ground and LEO GPS Data[J]. Journal of Geophysical Research:Space Physics, 1998, 103(A9):20789-20796.
[112] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. New Approaches in Global Ionospheric Determination Using Ground GPS Data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(16):1237-1247.
[113] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. Application of Ionospheric Tomography to Real-Time GPS Carrier-Phase Ambiguities Resolution, at Scales of 400-1000km and with High Geomagnetic Activity[J]. Geophysical Research Letters, 2000, 27(13):2009-2012.
[114] 徐继生, 邹玉华. 时变三维电离层层析成像重建公式[J]. 地球物理学报, 2003, 46(4):438-445. XU Jisheng, ZOU Yuhua. Reconstruction Formula of Time-dependent 3D Computerized Ionospheric Tomography[J]. Chinese Journal of Geophysics, 2003, 46(4):438-445.
[115] 徐继生, 邹玉华, 马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析[J]. 地球物理学报, 2005, 48(4):759-767. XU Jisheng, ZOU Yuhua, MA Shuying. Time-Dependent 3D Computerized Ionospheric Tomography with Ground-based GPS Network and Occultation Observations[J]. Chinese Journal of Geophysics, 2005, 48(4):759-767.
[116] LEE J K, KAMALABADI F, MAKELA J J. Localized Three-Dimensional Ionospheric Tomography with GPS Ground Receiver Measurements[J]. Radio Science, 2016, 42(4):RS4018.
[117] LEE J K, KAMALABADI F, MAKELA J J. Three-dimensional Tomography of Ionospheric Variability Using a Dense GPS Receiver Array[J]. Radio Science, 2008, 43(3):RS3001.
[118] MA X F, MARUYAMA T, MA G, et al. Three-Dimensional Ionospheric Tomography Using Observation Data of GPS Ground Receivers and Ionosonde by Neural Network[J]. Journal of Geophysical Research:Space Physics, 2005, 110(A5):A05308.
[119] WEN Debao, YUAN Yunbin, OU Jikun, et al. Three-dimensional Ionospheric Tomography by an Improved Algebraic Reconstruction Technique[J]. GPS Solutions, 2007, 11(4):251-258.
[120] WEN Debao, YUAN Yunbin, OU Jikun, et al. A Hybrid Reconstruction Algorithm for 3D Ionospheric Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1733-1739.
[121] WEN Debao, WANG Yong, NORMAN R. A New Two-Step Algorithm for Ionospheric Tomography Solution[J]. GPS Solutions, 2012, 16(1):89-94.
[122] 李慧. 基于GNSS的三维电离层层析反演算法研究[D]. 武汉:中国科学院测量与地球物理研究所, 2012. LI Hui. Studies on Three-dimension Ionospheric Tomography Using GNSS Measurements[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Science, 2012.
[123] 姚宜斌, 汤俊, 张良, 等. 电离层三维层析成像的自适应联合迭代重构算法[J]. 地球物理学报, 2014, 57(2):345-353. YAO Yibin, TANG Jun, ZHANG Liang, et al. An Adaptive Simultaneous Iteration Reconstruction Technique for Three-Dimensional Ionospheric Tomography[J]. Chinese Journal of Geophysics, 2014, 57(2):345-353.
[124] FREMOUW E J, SECAN J A, HOWE B M. Application of Stochastic Inverse Theory to Ionospheric Tomography[J]. Radio Science, 1992, 27(5):721-732.
[125] HANSEN A J, WALTER T, ENGE P. Ionospheric Correction Using Tomography[C]//Proceedings of the Institute of Navigation ION GPS-97. Kansas City:[s.n.], 1997:249-257.
[126] HOWE B M, RUNCIMAN K, SECAN J A. Tomography of the Ionosphere:Four-dimensional Simulations[J]. Radio Science, 1998, 33(1):109-128.
[127] SCHMIDT M, BILITZA D, SHUM C, et al. Regional 4D Modelling of the Ionospheric Electron Density[C]//Proceedings of the 36th COSPAR Scientific Assembly. Beijing, China:ADS, 2006:782-790.
[128] LIMBERGER M, LIANG W, SCHMIDT M, et al. Regional Representation of F2 Chapman Parameters Based on Electron Density Profiles[J]. Annales Geophysicae, 2013, 31(12):2215-2227.
[129] ALIZADEH MM, SCHUH H, SCHMIDT M. Ray Tracing Technique for Global 3D Modeling of Ionospheric Electron Density Using GNSS Measurements[J]. Radio Science, 2015, 5(6):539-553.
[130] KONG Jian, YAO Yibin, LIU Lei, et al. A New Computerized Ionosphere Tomography Model Using the Mapping Function and an Application to the Study of Seismic-ionosphere Disturbance[J]. Journal of Geodesy, 2016, 90(8):741-755.
[131] KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging[M].[S.l.]:IEEE Press,1988:275-296.
[132] PRYSE S E, KERSLEY L. A Preliminary Experimental Test of Ionospheric Tomography[J]. Journal of Atmospheric and Terrestrial Physics, 1992, 54(7-8):1007-1012.
[133] RIUS A, RUFFINI G, CUCURULL L. Improving the Vertical Resolution of Ionospheric Tomography with GPS Occultations[J]. Geophysical Research Letters, 1997, 24(18):2291-2294.
[134] RUFFINI G, CUCURULL L, FLORES A, et al. A PIM-Aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science, 2009, 24(4):365-369.
[135] BUST G S, COKER C, COCO D S, et al. IRI Data Ingestion and Ionospheric Tomography[J]. Advances in Space Research, 2001, 27(1):157-165.
[136] BUST G S, GARNER T W, GAUSSIRAN T L Ⅱ. Ionospheric Data Assimilation Three-dimensional (IDA3D):A global, Multisensor, Electron Density Specification Algorithm[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(A11):A11312.
[137] BHUYAN K, SINGH S B, BHUYAN P K. Application of Generalized Singular Value Decomposition to Ionospheric Tomography[J]. Annales Geophysicae, 2004, 22(10):3437-3444.
[138] NESTEROV I A, KUNITSYN V E. GNSS Radio Tomography of the Ionosphere:The Problem with Essentially Incomplete Data[J]. Advances in Space Research, 2011, 47(10):1789-1803.
[139] CHARTIER A T, SMITH N D, MITCHELL C N, et al. The Use Of Ionosondes in GPS Ionospheric Tomography at Low Latitudes[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A10):A10326.
[140] YAO Yibin, KONG Jian, TANG Jun. A New Ionosphere Tomography Algorithm with Two-grid Virtual Observations Constraints and Three-dimensional Velocity Profile[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2373-2383. DOI:10.1109/TGRS.2014.2359762.
[141] 霍星亮, 袁运斌, 欧吉坤, 等. 顾及电离层变化的层析反演新算法[J]. 地球物理学报, 2016, 59(7):2393-2401. HUO Xingliang, YUAN Yunbin, OU Jikun, et al. A New Ionospheric Tomographic Algorithm Taking into Account the Variation of the Ionosphere[J]. Chinese Journal of Geophysics, 2016, 59(7):2393-2401.
[142] HO C M, MANNUCCI A J, LINDQWISTER U J, et al. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network[J]. Geophysical Research Letters, 2013, 23(22):3219-3222.
[143] PRYSE S E. Ionospheric Tomography[J]. Surv. Geophys, 2003(24):1-38.
[144] MANNUCCI A J, TSURUTANI B T, ⅡJIMA B A, et al. Dayside Global Ionospheric Response to the Major Interplanetary Events of October 29-30, 2003"Halloween Storms"[J]. Geophysical Research Letters, 2005, 32(12):L12S02.
[145] WEN Debo, YUAN Yunbin, OU Jikun, et al. Ionospheric Temporal and Spatial Variations During the 18 August 2003 Storm over China[J]. Earth, Planets and Space, 2007, 59(4):313-317.
[146] YIZENGAW E, MOLDWIN M B. The Altitude Extension of the Mid-Latitude Trough and Its Correlation with Plasmapause Position[J]. Geophysical Research Letters, 2005, 320(9):L09105.
[147] YIZENGAW E, ZESTA E, MOLDWIN M B, et al. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics[J]. Journalof Geophysical Research:Space Physics, 2012, 117(A7):A7312.
[148] DAVIES K, BAKER D M. Ionospheric Effects Observed Around the Time of the Alaskan Earthquake of March 28, 1964[J]. Journal of Geophysical Research, 1965, 70(9):2251-2253.
[149] LEONARD R S, BARNES R A. Observation of Ionospheric Disturbances Following the Alaska Earthquake[J]. Journal of Geophysical Research, 1965, 70(5):1250-1253.
[150] DAUTERMANN T, CALAIS E, HAASE J, et al. Investigation of Ionospheric Electron Content Variations Before Earthquakes in Southern California, 2003-2004[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B2):B02106.
[151] LIU J Y, CHEN Y I, CHUO Y J, et al. A Statistical Investigation of Preearthquake Ionospheric Anomaly[J]. Journal of Geophysical Research:Space Physics, 2006, 111(A5):A05304.
[152] KON S, NISHIHASHI M, HATTORI K. Ionospheric Anomalies Possibly Associated with M ≥ 6 Earthquakes in the Japan Area during 1998-2010:Case Studies and Statistical Study[J]. Journal of Asian Earth Sciences, 2011, 41(4-5):410-420.
[153] SAROSO S, LIU J Y, HATTORI K, et al. Ionospheric GPS TEC Anomalies and M>=5.9 Earthquakes in Indonesia during 1993-2002[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(5):481-488.
[154] YAO Y B, CHEN P, ZHANG S, et al. Analysis of Pre-Earthquake Ionospheric Anomalies before the GlobalM=7.0+Earthquakes in 2010[J]. Natural Hazards and Earth System Sciences, 2012, 12(3):575-585.
[155] LIU J Y, TSAI H F, LIN C H, et al. Coseismic Ionospheric Disturbances Triggered by the Chi-Chi Earthquake[J]. Journal of Geophysical Resea rch:Space Physics, 2010, 115(A8):A08303.
[156] JIN Shuanggen, OCCHIPINTI G, JIN Rui. GNSS Ionospheric Seismology:Recent Observation Evidences and Characteristics[J]. Earth-Science Reviews, 2015(147):54-64. |