[1] 陆漱芬. 制图学是一门工具科学——对地图应用问题的设想[J]. 测绘学报, 1992, 21(4): 307-311. LU Shufen. Cartography can be regarded as an implemental science[J]. Acta Geodaetica et Cartographica Sinica, 1992, 21(4): 307-311. [2] 高俊. 地图学四面体——数字化时代地图学的诠释[J]. 测绘学报, 2004, 33(1): 6-11. GAO Jun. Cartographic tetrahedron: explanation of cartography in the digital era[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1): 6-11. [3] 郭仁忠, 应申. 论ICT时代的地图学复兴[J]. 测绘学报, 2017, 46(10): 1274-1283. DOI: 10.11947/j.AGCS.2017.20170335. GUO Renzhong, YING Shen. The rejuvenation of cartography in ICT era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1274-1283. DOI: 10.11947/j.AGCS.2017.20170335. [4] 闾国年, 俞肇元, 袁林旺, 等. 地图学的未来是场景学吗?[J]. 地球信息科学学报, 2018, 20(1): 1-6. LÜ Guonian, YU Zhaoyuan, YUAN Linwang, et al. Is the future of cartography the scenario science?[J]. Journal of Geo-Information Science, 2018, 20(1): 1-6. [5] 余卓渊, 闾国年, 张夕宁, 等. 全息高精度导航地图: 概念及理论模型[J]. 地球信息科学学报, 2020, 22(4): 760-771. YU Zhuoyuan, LÜ Guonian, ZHANG Xining, et al. Pan-information-based high precision navigation map: concept and theoretical model[J]. Journal of Geo-Information Science, 2020, 22(4): 760-771. [6] WEIBEL R, KELLER S, REICHENBACHER T. Overcoming the knowledge acquisition bottleneck in map generalization: the role of interactive systems and computational intelligence[C]//Proceedings of 1995 International Conference on Spatial Information Theory. Semmering, Austria: Springer, 1995: 139-156. [7] 艾廷华. 适宜空间认知结果表达的地图形式[J]. 遥感学报, 2008, 12(2): 347-354. AI Tinghua. Maps adaptable to represent spatial cognition[J]. Journal of Remote Sensing, 2008, 12(2): 347-354. [8] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016. [9] 孙群. 专家系统以及它在地图制图领域中的应用[J]. 测绘学院学报, 1992(1): 67-73. SUN Qun. Expert system and its application in cartography[J]. Journal of Institute of Surveying and Mapping, 1992(1): 67-73. [10] 华一新. 用专家系统技术确定地图要素的地图符号类型[J]. 测绘学院学报, 1991(3): 43-47, 55. HUA Yixin. Determine the map symbol type of map element with expert system technology[J]. Journal of Institute of Surveying and Mapping, 1991(3): 43-47, 55. [11] 张文星, 苏波, 李华, 等. 集成式专家系统工具GEST[J]. 武汉测绘科技大学学报, 1992, 17(3): 1-8. ZHANG Wenxing, SU Bo, LI Hua, et al. An integrated expert system tool-GEST[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1992, 17(3): 1-8. [12] SESTER M. Knowledge acquisition for the automatic interpretation of spatial data[J]. International Journal of Geographical Information Science, 2000, 14(1): 1-24. [13] SESTER M. Optimization approaches for generalization and data abstraction[J]. International Journal of Geographical Information Science, 2005, 19(8-9): 871-897. [14] 钱海忠,武芳,王家耀.自动制图综合及其过程控制的智能化研究[M].北京:测绘出版社,2012. QIAN Haizhong, WU Fang, WANG Jiayao. Study of automated cartographic generalization and intelligentized generalization process control[M]. Beijing: Surveying and Mapping Press, 2012. [15] 高松. 地理空间人工智能的近期研究总结与思考[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1865-1874. GAO Song. A review of recent researches and reflections on geospatial artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1865-1874. [16] TOUYA G, ZHANG X, LOKHAT I. Is deep learning the new agent for map generalization?[J]. International Journal of Cartography, 2019, 5(2-3): 142-157. [17] LEI Yingzhe, AI Tinghua, ZHANG Xiang, et al. A parallel annotation placement method for dense point of interest labels using hexagonal grid[J]. Cartography and Geographic Information Science, 2021, 48(2): 95-104. [18] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [19] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [20] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. [21] ZHU Di, LIU Yu. Modelling spatial patterns using graph convolutional networks (short paper)[C]//Proceedings of the 10th International Conference on Geographic Information Science. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 73:1-7. [22] JENNY B, HEITZLER M, SINGH D, et al. Cartographic relief shading with neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1225-1235. [23] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8): 939-953. DOI: 10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 939-953. DOI: 10.11947/j.AGCS.2019.20190125. [24] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [25] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. [26] O’CALLAGHAN J F, MARK D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics, and Image Processing, 1984, 28(3): 323-344. [27] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning. New York: Curran Associates, Inc., 2016: 2014-2023. [28] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017. [29] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(S1): 234-240. [30] ANSELIN L. Local indicators of spatial association: LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. [31] 艾廷华. 大数据驱动下的地图学发展[J]. 测绘地理信息, 2016, 41(2): 1-7. AI Tinghua. Development of cartography driven by big data[J]. Journal of Geomatics, 2016, 41(2): 1-7. [32] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [33] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988. [34] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence Main Track. Stockholm: IJCAI, 2018: 3634-3640. [35] XING Hanfa, MENG Yuan. Integrating landscape metrics and socioeconomic features for urban functional region classification[J]. Computers, Environment and Urban Systems, 2018, 72: 134-145. [36] CAO Rui, TU Wei, YANG Cuixin, et al. Deep learning-based remote and social sensing data fusion for urban region function recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 82-97. [37] 李志林, 王继成, 谭诗腾, 等. 地理信息科学中尺度问题的30年研究现状[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2233-2242. LI Zhilin, WANG Jicheng, TAN Shiteng, et al. Scale in geo-information science: an overview of thirty-year development[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2233-2242. [38] PLAZANET C, BIGOLIN N M, RUAS A. Experiments with learning techniques for spatial model enrichment and line generalization[J]. GeoInformatica, 1998, 2(4): 315-333. [39] RUAS A, DUCHÊNE C. A prototype generalisation system based on the multi-agent system paradigm[M]//MACKANESS W A, RUAS A, SARJAKOSKI L T. Generalisation of Geographic Information. Amsterdam: Elsevier, 2007: 269-284. [40] SESTER M, FENG Yu, THIEMANN F. Building generalization using deep learning[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Delft: [s.n.], 2018: 565-572. [41] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3): 490-512. [42] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273. [43] LEE J, JANG H, YANG J, et al. 2017. Machine learning classification of buildings for map generalization[J]. ISPRS International Journal of Geo-Information, 2017, 6 (10), 309-324. [44] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 2414-2423. [45] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems: vol. 2. Cambridge MA: MIT Press, 2014: 2672-2680. [46] SCHNVRER R, SIEBER R, SCHMID-LANTER J, et al. Detection of pictorial map objects with convolutional neural networks[J]. The Cartographic Journal, 2020. [47] 任加新, 刘万增, 李志林, 等. 利用卷积神经网络进行“问题地图”智能检测[J]. 武汉大学学报(信息科学版), 2021, 46(4): 570-577. REN Jiaxin, LIU Wanzeng, LI Zhilin, et al. Intelligent detection of “Problematic Map” using convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. [48] 王米琪, 艾廷华, 晏雄锋, 等. 图卷积网络模型识别道路正交网格模式[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1960-1969. WANG Miqi, AI Tinghua, YAN Xiongfeng, et al. Grid pattern recognition in road networks based on graph convolution network model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1960-1969. [49] 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3): 385-395. DOI: 10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 385-395. DOI: 10.11947/j.AGCS.2018.20170265. [50] HU Sheng, GAO Song, WU Liang, et al Urban function classification at road segment level using taxi trajectory data: a graph convolutional neural network approach[J]. Computers, Environment and Urban Systems, 2021, 87: 101619. |