
测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2111-2124.doi: 10.11947/j.AGCS.2024.20230360
收稿日期:2023-09-08
出版日期:2024-12-13
发布日期:2024-12-13
通讯作者:
李伟
E-mail:11210877@stu.lzjtu.edu.cn;geosci.wli@lzjtu.edu.cn
作者简介:颉旭康(1999—),男,硕士,研究方向为卫星大地测量与水文学。 E-mail:11210877@stu.lzjtu.edu.cn
基金资助:
Xukang XIE1,2,3(
), Wei LI1,2,3(
)
Received:2023-09-08
Online:2024-12-13
Published:2024-12-13
Contact:
Wei LI
E-mail:11210877@stu.lzjtu.edu.cn;geosci.wli@lzjtu.edu.cn
About author:XIE Xukang (1999—), male, master, majors in satellite geodesy and hydrology. E-mail: 11210877@stu.lzjtu.edu.cn
Supported by:摘要:
利用卫星测高技术提取湖库水位信息时,融合多种卫星测高数据构建长时序和高精度的水位尤为重要。本文以青海湖为例,选取Envisat、SARAL、Sentinel-3A和Sentinel-3B这4颗测高卫星数据,基于不同数据源结果及其特征构建了20 a时长的数据集,提出了融合自适应定权和偏差匹配的多源卫星测高数据水位提取算法,其中自适应定权能根据不同场景选择适当的改正算法模型,并为多源测高参数确定不同的权重参数,从而统一数据。偏差匹配方法则最大程度将定性数据定量化,使水位提取更准确。同时建立了人工智能框架实现了水位提取的自动化和一体化。试验显示,经过自适应定权的多源测高特征值可以被合理分类且具有强相关性,可为构建长时序水位信息提供整体高精度的基础数据;结合偏差匹配方法,以天为尺度提取的水位和实测水位相关系数R2在0.9以上,若将相关系数R2阈值设为0.8,可单次提取5个月时长的水位。结合单天提取和多天提取提出长期提取方法,构建了12 a的长时序水位,其相关系数R2在0.9以上,平均绝对误差(MAE)值在1.5~2.0 cm之间,均方根误差(RMSE)值在2.0~2.5 cm之间,成功构建了长时序和高精度的水位。鉴于此,该数据处理算法和构建的模型在水位信息提取及预测方面体现出一定的实用价值,其研究成果也印证了人工智能与卫星测高相结合在小尺度水域构建长时序高精度水位的可行性。
中图分类号:
颉旭康, 李伟. 融合自适应定权和偏差匹配的多源卫星测高数据水位提取算法[J]. 测绘学报, 2024, 53(11): 2111-2124.
Xukang XIE, Wei LI. Water level extraction algorithm based on adaptive weighting and deviation matching of multi-source satellite altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2111-2124.
表3
6个主成分的详解"
| 主成分 | 参数 | 归属 | 特征 | 载荷 | 选取 |
|---|---|---|---|---|---|
| peakiness_1_plrm_ku | 波峰 | 限制类因素 | 0.959 | 是 | |
| peakiness_2_c | 波峰 | 限制类因素 | 0.953 | 是 | |
| peakiness_1_c | 波峰 | 限制类因素 | 0.953 | 是 | |
| tb_365 | 表面亮温 | 外界因素 | 0.928 | 是 | |
| tb_238 | 表面亮温 | 外界因素 | 0.925 | 是 | |
| 1 | peakiness_1_plrm_ku | 波峰 | 限制类因素 | 0.922 | 是 |
| sig0_ocog_c | 后向散射系数 | 限制类因素 | 0.921 | 是 | |
| sig0_ice_plrm_ku | 后向散射系数 | 限制类因素 | 0.827 | 否 | |
| sig0_ice_c | 后向散射系数 | 限制类因素 | 0.718 | 否 | |
| mod_dry | 干对流层 | 传播修正 | 0.625 | 是 | |
| sig0_ocog_ku | 后向散射系数 | 限制类因素 | 0.606 | 否 | |
| data | 日期 | 时间特征 | 0.952 | 是 | |
| cycle | 周期 | 识别特征 | 0.951 | 是 | |
| 2 | in_situ | 实测水位值 | 标签值 | 0.920 | 是 |
| num | 时序 | 识别特征 | 0.789 | 是 | |
| sig0_ocog_ku | 后向散射系数 | 限制类因素 | -0.694 | 否 | |
| sig0_ice_sheet_ku | 后向散射系数 | 限制类因素 | -0.743 | 否 | |
| geoid | 大地水准面 | 限制类因素 | 0.988 | 是 | |
| 3 | lon | 经度 | 限制类因素 | 0.986 | 是 |
| lat | 纬度 | 限制类因素 | -0.993 | 否 | |
| 4 | iono_cor_gim | 电离层 | 传播修正 | 0.892 | 是 |
| 5 | ASOE | 独热编码 | 识别特征 | 0.970 | 是 |
| 6 | mod_wet | 湿对流层 | 传播修正 | 0.653 | 是 |
| [1] | 姜丽光, 刘俊, 张星星. 基于卫星雷达测高技术的湖库动态监测理论、方法和研究进展[J]. 遥感学报, 2022, 26(1): 104-114. |
| JIANG Liguang, LIU Jun, ZHANG Xingxing. Monitoring lakes and reservoirs using satellite radar altimetry: theory, methods, and progresses[J]. National Remote Sensing Bulletin, 2022, 26(1): 104-114. | |
| [2] | JIANG Liguang, NIELSEN K, ANDERSEN O B, et al. CryoSat-2 radar altimetry for monitoring freshwater resources of China[J]. Remote Sensing of Environment, 2017, 200: 125-139. |
| [3] | DU Bin, LI Jiancheng, JIN Taoyong, et al. Synthesis analysis of swot karin-derived water surface heights and local cross-calibration of the baseline roll knowledge error over Lake Baikal[J]. Earth and Space Science, 2021, 8(11): e2021EA001990. |
| [4] | HOU Jiawei, VAN DIJK A I J M, RENZULLO L J, et al. GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging[J]. Earth System Science Data, 2024, 16(1): 201-218. |
| [5] | JIANG Liguang, NIELSEN K, ANDERSEN O B. Improvements in mountain lake monitoring from satellite altimetry over the past 30 years-lessons learned from Tibetan Lakes[J]. Remote Sensing of Environment, 2023, 295: 113702. |
| [6] | JIANG Liguang, ZHAO Yanan, NIELSEN K, et al. Near real-time altimetry for river monitoring-a global assessment of Sentinel-3[J]. Environmental Research Letters, 2023, 18(7): 074017. |
| [7] | ZWALLY H J, ROBBINS J W. New insights to antarctic glacial history and earth dynamics from integration of satellite gravimetry and altimetry measurements of mass changes[C]//Proceedings of 2019 AGU Fall Meeting Abstracts. San Francisco: [s.n.], 2019: C21E-1503. |
| [8] | ZWALLY H J, ROBBINS J W, LUTHCKE S B, et al. Mass balance of the Antarctic ice sheet 1992—2016: reconciling results from GRACE gravimetry with ICESat, ERS1/2 and EnviSat altimetry[J]. Journal of Glaciology, 2021, 67(263): 533-559. |
| [9] | YANG Lei, LIU Min, LIU Na, et al. Recovering bathymetry from satellite altimetry-derived gravity by fully connected deep neural network[J]. IEEE Geoscience and Remote Sensing Letter, 2023, 20: 1-5. |
| [10] | ZHU Chengcheng, YANG Lei, BIAN Hongwei, et al. Recovering gravity from satellite altimetry data using deep learning network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11. |
| [11] | ABDALLA S, KOLAHCHI A A, ABLAIN M, et al. Altimetry for the future: building on 25 years of progress[J]. Advances in Space Research, 2021, 68(2): 319-363. |
| [12] | FABLET R, VERRON J, MOURRE B, et al. Improving mesoscale altimetric data from a multitracer convolutional processing of standard satellite-derived products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2518-2525. |
| [13] | 汪海洪, 罗志才, 杨元德, 等. 基于波形分类的近海卫星测高数据自适应重跟踪方法[J]. 测绘学报, 2012, 41(5): 729-734. |
| WANG Haihong, LUO Zhicai, YANG Yuande, et al. An adaptive retracking method for coastal altimeter data based on waveform classification[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 729-734. | |
| [14] | BAO Lifeng, LU Yang, WANG Yong. Improved retracking algorithm for oceanic altimeter waveforms[J]. Progress in Natural Science, 2009, 19(2): 195-203. |
| [15] | SOTIROPOULOU K F, VAVATSIKOS A P. A decision-making framework for spatial multicriteria suitability analysis using promethee ii and k nearest neighbor machine learning models[J]. Journal of Geovisualization and Spatial Analysis, 2023, 7(2): 20. |
| [16] | 金涛勇, 李建成, 姜卫平, 等. 基于多源卫星测高数据的新一代全球平均海面高模型[J]. 测绘学报, 2011, 40(6): 723-729. |
| JIN Taoyong, LI Jiancheng, JIANG Weiping, et al. The new generation of global mean sea surface height model based on multi-altimetric data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6): 723-729. | |
| [17] | 李大炜, 李建成, 金涛勇, 等. 利用多代卫星测高资料监测1993~2011年全球海平面变化[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1421-1424. |
| LI Dawei, LI Jiancheng, JIN Taoyong, et al. Monitoring global sea level change from 1993 to 2011 using topex and jason altimeter missions[J], Geomatics and Information Science of Wuhan University, 2012, 37(12): 1421-1424. | |
| [18] | YAO Fangfang, LIVNEH B, RAJAGOPALAN B, et al. Satellites reveal widespread decline in global lake water storage[J]. Science, 2023, 380(6646): 743-749. |
| [19] | 姜卫平, 褚永海, 李建成, 等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报(信息科学版), 2008, 33(1): 64-67. |
| JIANG Weiping, CHU Yonghai, LI Jiancheng, et al. Water level variation of Qinghai Lake from altimeteric data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 64-67. | |
| [20] | HUANG Qi, LONG Di, DU Mingda, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211: 112-128. |
| [21] | OKADA S, OHZEKI M, TAGUCHI S. Efficient partition of integer optimization problems with one-hot encoding[J]. Scientific Reports, 2019, 9(1): 13036. |
| [22] | 褚永海, 李建成, 金涛勇, 等. T/P雷达高度计后向散射系数陆地表面观测应用[J]. 大地测量与地球动力学, 2009, 29(3): 104-108. |
| CHU Yonghai, LI Jiancheng, JIN Taoyong, et al. Application of T/P altimeter backscatter data to land surface observation[J]. Journal of Geodesy and Geodynamics, 2009, 29(3): 104-108. | |
| [23] | 孙明智, 刘新, 汪海洪, 等. 多源卫星测高数据监测拉昂错1992年—2020年水位变化[J]. 遥感学报, 2022, 26(1): 126-137. |
| SUN Mingzhi, LIU Xin, WANG Haihong, et al. Monitoring lake level change in La-ang Co from 1992 to 2020 using multi-altimeter data[J]. National Remote Sensing Bulletin, 2022, 26(1): 126-137. | |
| [24] | 郭金运, 孙佳龙, 常晓涛, 等. TOPEX/Poseidon卫星监测博斯腾湖水位变及其与NINO3 SST的相关性分析[J]. 测绘学报, 2010, 39(3): 221-226. |
| GUO Jinyun, SUN Jialong, CHANG Xiaotao, et al. Water level variation of bosten lake monitored with TOPEX/Poseidon and its correlation with NIN03 SST[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3): 221-226. | |
| [25] | THARA D K, PREMASUDHA B G, XIONG Fan. Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques[J]. Pattern Recognition Letters, 2019, 128: 544-550. |
| [26] | NI Sen, JIA Pengfei, XU Yang, et al. Prediction of CO concentration in different conditions based on Gaussian-TCN[J]. Sensors and Actuators B: Chemical, 2023, 376(Part B): 133010. |
| [27] | GU Jiuxiang, WANG Zhenhua, JASON K, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377. |
| [28] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 18-27. |
| [29] | ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence. San Francisco: [s.n.], 2021: 11106-11115. |
| [30] | LI Zewen, LIU Fan, YANG Wenjie, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(12): 6999-7019. |
| [31] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [1] | 李博峰, 陈龙, 袁雷童. GNSS多基线联合解算的高精度变形监测方法[J]. 测绘学报, 2025, 54(12): 2116-2128. |
| [2] | 耿涛, 李强, 程凌岳, 刘经南. GNSS与低轨卫星相对论效应改正方法[J]. 测绘学报, 2025, 54(12): 2129-2141. |
| [3] | 张守建, 曹新运, 葛玉龙, 沈飞. GLONASS-K与GLONASS-M+卫星姿态建模对卫星钟差估计和精密单点定位的影响[J]. 测绘学报, 2025, 54(12): 2142-2152. |
| [4] | 陈健, 王佳辉, 赵兴旺, 刘超, 刘春阳, 余学祥. BDS-3/Galileo星座多频弱电离层组合单历元RTK定位优化方法[J]. 测绘学报, 2025, 54(12): 2153-2167. |
| [5] | 李新瑞, 曲轩宇, 张勤, 舒宝, 孟岭恩, 许豪, 张双成, 黄观文, 武翰文, 王利. 数据驱动的PPP-RTK多径误差缓解方法及其在变形监测中的应用[J]. 测绘学报, 2025, 54(12): 2168-2181. |
| [6] | 高佳鑫, 隋心, 王长强, 徐爱功, 史政旭. 稳定静态点云簇支持的LiDAR SLAM回环检测方法[J]. 测绘学报, 2025, 54(12): 2194-2205. |
| [7] | 谷宇鹏, 刘万科, 张小红, 胡捷, 胡树杰, 雷维豪, 郑凯. 鱼眼图像支持的GNSS随机模型神经网络生成方法[J]. 测绘学报, 2025, 54(12): 2206-2218. |
| [8] | 陈志键. LiDAR SLAM/INS/UWB多源信息融合定位理论方法研究[J]. 测绘学报, 2025, 54(12): 2290-2290. |
| [9] | 饶维龙. 基于GRACE时变重力的青藏高原质量迁移与地壳变形研究[J]. 测绘学报, 2025, 54(12): 2291-2291. |
| [10] | 杨柳. 精密单点定位反演大气水汽关键模型研究[J]. 测绘学报, 2025, 54(12): 2294-2294. |
| [11] | 齐霁. 广义监督信号引导的可见光遥感影像解译基础模型[J]. 测绘学报, 2025, 54(12): 2296-2296. |
| [12] | 郭树人, 蔡洪亮, 高为广, 周巍, 耿长江, 李罡, 董明, 宿晨庚, 姜坤, 孟轶男, 陈雷, 潘军洋, 李凯, 李奇奋, 唐小妹, 张爽娜, 胡小工. 面向精确可信PNT服务的新型全球卫星导航系统架构[J]. 测绘学报, 2025, 54(11): 1934-1953. |
| [13] | 顾元元, 姚旭, 安璐, 乔刚, 郝彤. 基于高精度动态GNSS测线的中国南极内陆科考路线平整度分析与评估[J]. 测绘学报, 2025, 54(11): 1968-1979. |
| [14] | 宋瀚昀, 李昕, 黄观文, 李航. 无人机气压计测高模型精化及GNSS/SINS组合定位增强[J]. 测绘学报, 2025, 54(11): 1980-1991. |
| [15] | 李博. BDS-3/GNSS PPP-RTK增强产品估计和可信定位方法[J]. 测绘学报, 2025, 54(11): 2097-2097. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||