测绘学报 ›› 2024, Vol. 53 ›› Issue (2): 379-390.doi: 10.11947/j.AGCS.2024.20220606

• 地图学与地理信息 • 上一篇    下一篇

适应不同轨迹数据场景的道路线形组合优化提取方法

姚志鹏1, 彭程1, 唐建波1,2, 刘国平3, 杨学习1,2, 刘慧敏1, 邓敏1,2   

  1. 1. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    2. 湖南省地理空间信息工程技术研究中心, 湖南 长沙 410007;
    3. 北京滴滴出行科技有限公司, 北京 100089
  • 收稿日期:2022-10-24 修回日期:2023-11-27 发布日期:2024-03-08
  • 通讯作者: 唐建波 E-mail:jianbo.tang@csu.edu.cn
  • 作者简介:姚志鹏(1998-),男,硕士,研究方向为时空轨迹数据挖掘与分析。E-mail:zhipengyao@csu.edu.cn
  • 基金资助:
    国家自然科学基金(42271462;42171441;42271485);国家重点研发计划(2022YFB3904203);湖南省自然科学基金(2021JJ40727;2022JJ30703;2020JJ4749)

An adaptive road centerline extraction method for different trajectory data scenarios based on combinatorial optimization

YAO Zhipeng1, PENG Cheng1, TANG Jianbo1,2, LIU Guoping3, YANG Xuexi1,2, LIU Huimin1, DENG Min1,2   

  1. 1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;
    2. Hunan Geospatial Information Engineering and Technology Research Center, Changsha 410007, China;
    3. Beijing Didi Chuxing Technology Co., Ltd., Beijing 100089, China
  • Received:2022-10-24 Revised:2023-11-27 Published:2024-03-08
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42271462; 42171441; 42271485); The National Key Research and Development Program of China (No. 2022YFB3904203); Hunan Provincial Natural Science Foundation of China (Nos. 2021JJ40727; 2022JJ30703; 2020JJ4749)

摘要: 车辆轨迹数据是当前城市导航路网地图动态更新的一种重要数据源,从杂乱无序的轨迹点或轨迹线中提取并拟合道路几何形态,进而生成结构化的道路矢量地图是基于轨迹数据进行道路网地图构建与更新的关键步骤。现有的道路中心线提取方法主要采用单一的线形拟合算法进行轨迹数据拟合,然而真实道路的几何形态复杂多样和车辆轨迹数据质量参差不齐,导致单一的道路线形拟合算法只能在某些特定的数据场景下适用,无法针对不同的数据场景自适应的拟合出理想的道路中心线。此外,相比于专业测量方式采集的高频轨迹数据,出租车等采集的低频轨迹数据存在轨迹点稀疏、噪声多、定位误差大等问题,这使得从低频轨迹数据中提取理想的道路中心线仍具有挑战,尤其是针对复杂的交叉口区域。为此,本文基于分治策略的思想,提出了一种适应不同轨迹数据场景的道路线形组合优化提取方法。该方法在轨迹数据预处理的基础上,根据轨迹数据的分布特点对数据进行场景分类;进而,针对不同的数据场景匹配最优的线形拟合算法,通过组合优化策略生成理想的道路中心线。本文方法融合不同拟合算法的互补优势,可以有效解决数据分布稀疏、道路结构复杂(如自相交立交桥)等不同数据场景下的道路线形拟合问题。采用北京市出租车轨迹数据进行试验与对比分析,本文方法生成道路的平均位置精度为1.24 m,显著优于现有代表性方法。

关键词: 轨迹数据, 道路中心线, 线形拟合, 自适应, 路网提取

Abstract: Vehicle trajectory data is an important data source for road map update. Extracting road centerlines from the disordered trajectory points or trajectory lines, and generating a structured vector map is a key step for road network generation and update based on trajectory data. The existing methods of road centerline extraction mainly use a single curve fitting algorithm, which are not adaptive to different data scenarios, especially for complex road structures and trajectories of different quality. In addition, compared with the professional collected high-frequency trajectory data, road centerline extraction based on the low-frequency trajectory data collected by float cars is still challenging due to the noise, sparsity, and low position accuracy. Therefore, this paper proposes an adaptive road centerline extraction method for different trajectory data scenarios based on combinatorial optimization and divide-and-conquer strategy. Based on preprocessing and clustering of trajectory data, this method classifies the trajectory data according to its distribution characteristics. Then, the optimal fitting algorithm is matched according to different data scenarios, and the ideal road centerline is generated by combinatorial optimization strategy. This method integrates the advantages of different fitting algorithms, and can effectively solve the road centerline extraction problem for different data scenarios such as sparse data and complex road structures (e.g. self-intersection overpasses). Experiments on floating car data in Beijing, China, were conducted and results show that the average position accuracy of the roads generated by this method is 1.24 m, which is significantly better than the existing available methods.

Key words: trajectory data, road centerline, curve fitting, adaptation, road network extraction

中图分类号: