| [1] |
罗卿莉, 崔峰志, 魏钜杰, 等. SAR影像变化检测的前景特征流形排序法[J]. 测绘学报, 2022, 51(11): 2365-2378. DOI: .
doi: 10.11947/j.AGCS.2024.20240040
|
|
LUO Qingli, CUI Fengzhi, WEI Jujie, et al. Foreground feature manifold ranking method for SAR image change detection[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2365-2378. DOI: .
doi: 10.11947/j.AGCS.2024.20240040
|
| [2] |
STUBBS D C, SILWAL L, THUROW B S, et al. Three-dimensional measurement of the crater formation during plume-surface interactions using stereo-photogrammetry[J]. AIAA Journal, 2022, 60(3): 1316-1331.
|
| [3] |
WU Songbo, ZHANG Bochen, DING Xiaoli, et al. A hybrid method for MT-InSAR phase unwrapping for deformation monitoring in urban areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102963.
|
| [4] |
LUO Qingli, LI Jian, ZHANG Yuanzhi. Monitoring subsidence over the planned Jakarta-Bandung (Indonesia) high-speed railway using Sentinel-1 multi-temporal InSAR data[J]. Remote Sensing, 2022, 14(17): 4138.
|
| [5] |
DANA K J, VAN GINNEKEN B, NAYAR S K, et al. Reflectance and texture of real-world surfaces[J]. ACM Transactions on Graphics, 1999, 18(1): 1-34.
|
| [6] |
WU B, LIU W C, GRUMPE A, et al. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140: 3-19.
|
| [7] |
张艳超, 庄载椿, 肖宇钊, 等. 基于运动恢复结构算法的油菜NDVI三维分布[J]. 农业工程学报, 2015, 31(17): 207-214.
|
|
ZHANG Yanchao, ZHUANG Zaichun, XIAO Yuzhao, et al. Rape plant NDVI 3D distribution based on structure from motion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 207-214.
|
| [8] |
MOULON P, MONASSE P, MARLET R. Adaptive structure from motion with a Contrario model estimation[C]//Proceedings of 2012 Asian Conference on Computer Vision. Berlin: Springer, 2013: 257-270.
|
| [9] |
SARITAS M M, YASAR A. Performance analysis of ANN and naive Bayes classification algorithm for data classification[J]. International Journal of Intelligent Systems and Applications in Engineering, 2019, 7(2): 88-91.
|
| [10] |
ZHOU Tinghui, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6612-6619.
|
| [11] |
LIU B Y, GOULD S, KOLLER D. Single image depth estimation from predicted semantic labels[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 1253-1260.
|
| [12] |
SHI Wenzhe, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
|
| [13] |
FAROOQ BHAT S, ALHASHIM I, WONKA P. AdaBins: depth estimation using adaptive bins[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4008-4017.
|
| [14] |
REZA M A, KOSECKA J, DAVID P. FarSight: long-range depth estimation from outdoor images[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 4751-4757.
|
| [15] |
CHO J, MIN Dongbo, KIM Y, et al. Deep monocular depth estimation leveraging a large-scale outdoor stereo dataset[J]. Expert Systems with Applications, 2021, 178: 114877.
|
| [16] |
FENG Qi, SHUM H P H, MORISHIMA S. 360 depth estimation in the wild - the Depth360 dataset and the SegFuse network[C]//Proceedings of 2022 IEEE Conference on Virtual Reality and 3D User Interfaces. Christchurch: IEEE, 2022: 664-673.
|
| [17] |
YUAN Haobo, LI Xiangtai, YANG Yibo, et al. PolyphonicFormer: unified query learning for depth-aware video panoptic segmentation[C]//Proceedings of 2022 European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 582-599.
|
| [18] |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
|
| [19] |
GUIZILINI V, AMBRUS R, PILLAI S, et al. 3D packing for self-supervised monocular depth estimation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2482-2491.
|
| [20] |
SRIVASTAVA S, VOLPI M, TUIA D. Joint height estimation and semantic labeling of monocular aerial images with CNNS[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth: IEEE, 2017: 5173-5176.
|
| [21] |
MOU Lichao, ZHU Xiaoxiang. IM2HEIGHT: height estimation from single monocular imagery via fully residual convolutional-deconvolutional network[EB/OL]. [2024-02-04]. https://arxiv.org/abs/1802.10249v1.
|
| [22] |
GHAMISI P, YOKOYA N. IMG2DSM: height simulation from single imagery using conditional generative adversarial net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 794-798.
|
| [23] |
XUE Minglong, LI Jian, ZHAO Zheng, et al. SAR2HEIGHT: height estimation from a single SAR image in mountain areas via sparse height and proxyless depth-aware penalty neural architecture search for Unet[J]. Remote Sensing, 2022, 14(21): 5392.
|
| [24] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
|
| [25] |
XUE Minglong, LI Jian, LUO Qingli. A geometry-aware consistent constraint for height estimation from a single SAR imagery in mountain areas[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
|