
测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 873-887.doi: 10.11947/j.AGCS.2025.20240300
王超1(
), 陈天宇1, 张同1, AhmedTanvir1, 纪立强1, 谢涛2(
), 杨佳俊1, 王帅1
收稿日期:2024-07-22
修回日期:2025-03-20
出版日期:2025-06-23
发布日期:2025-06-23
通讯作者:
谢涛
E-mail:chaowang@nuist.edu.cn;xietao@nuist.edu.cn
作者简介:王超(1984—),男,博士,副教授,研究方向为高分辨率遥感影像处理。E-mail:chaowang@nuist.edu.cn
基金资助:
Chao WANG1(
), Tianyu CHEN1, Tong ZHANG1, Tanvir AHMED1, Liqiang JI1, Tao XIE2(
), Jiajun YANG1, Shuai WANG1
Received:2024-07-22
Revised:2025-03-20
Online:2025-06-23
Published:2025-06-23
Contact:
Tao XIE
E-mail:chaowang@nuist.edu.cn;xietao@nuist.edu.cn
About author:WANG Chao (1984—), male, PhD, associate professor, majors in high-resolution remote sensing image processing. E-mail: chaowang@nuist.edu.cn
Supported by:摘要:
高分辨率光学影像空间细节信息丰富、解译可靠性高,是遥感变化检测任务的主要数据来源之一。在实际应用中,单一来源的光学影像容易受重访周期、存档数据可用性等因素限制而难以满足需求,联合多源光学遥感影像则具有更强的灵活性及适用性。然而,不同传感器获得的光学遥感影像存在较大的时空异质性,显著的“伪不变”和“伪变化”现象给准确提取真实变化信息带来了严峻挑战。为此,本文以开发对“伪不变”和“伪变化”现象兼具强鉴别能力的模型为设计目标,提出了一种基于全局差分增强模块(GDEM)和平衡惩罚损失(BP Loss)的多源光学遥感影像变化检测方法,称为GB-UNet++。其中,GDEM模块通过引入Transformer结构实现多时相影像全局信息间的交互,以增强模型捕捉跨像素/区域变化信息的能力;此外,本文构建的BP Loss能够自适应调整损失的权重,从而提高模型对两类错误样本的学习能力。在6个数据集上进行的大量试验表明,本文方法的总体精度和F1值分别可达99.02%和84.86%,显著优于5种先进的对比方法。
中图分类号:
王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887.
Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887.
表2
不同方法的预测结果定量评价"
| 数据集 | 方法 | P/(%) | R/(%) | PRD/(%) | F1值/(%) | OA/(%) | Kappa系数 |
|---|---|---|---|---|---|---|---|
| BCDD | Vc T_CD | 79.55 | 86.42 | 6.87 | 82.46 | 98.86 | 0.817 2 |
| BIT_CD | 76.55 | 85.39 | 8.84 | 80.74 | 98.73 | 0.806 1 | |
| ChangeFormer | 64.97 | 77.29 | 12.32 | 70.60 | 98.23 | 0.696 9 | |
| CLNet | 74.95 | 80.61 | 5.66 | 77.67 | 98.59 | 0.769 4 | |
| MFED-UNet++ | 81.01 | 84.63 | 3.62 | 82.77 | 98.89 | 0.822 1 | |
| GB-UNet++ | 83.24 | 86.54 | 3.30 | 84.86 | 99.02 | 0.843 5 | |
| Vc T_CD | 68.15 | 67.54 | 0.61 | 67.84 | 88.18 | 0.638 8 | |
| BIT_CD | 64.05 | 69.69 | 5.64 | 66.75 | 87.88 | 0.608 5 | |
| DSIFN | ChangeFormer | 63.27 | 65.18 | 1.91 | 64.21 | 86.89 | 0.609 3 |
| CLNet | 75.13 | 55.62 | 19.51 | 63.92 | 80.05 | 0.547 9 | |
| MFED-UNet++ | 55.39 | 78.28 | 22.89 | 64.88 | 88.15 | 0.612 2 | |
| GB-UNet++ | 68.83 | 69.15 | 0.32 | 68.99 | 88.24 | 0.666 2 | |
| Vc T_CD | 70.10 | 74.53 | 4.43 | 72.24 | 93.94 | 0.688 5 | |
| BIT_CD | 47.58 | 84.02 | 36.44 | 60.75 | 93.08 | 0.572 8 | |
| GZCD | ChangeFormer | 46.51 | 87.71 | 41.20 | 60.78 | 93.25 | 0.574 7 |
| CLNet | 42.70 | 95.60 | 52.90 | 59.03 | 93.33 | 0.559 8 | |
| MFED-UNet++ | 73.10 | 77.47 | 4.37 | 75.22 | 94.10 | 0.721 9 | |
| GB-UNet++ | 75.41 | 86.12 | 10.71 | 80.41 | 95.87 | 0.781 2 | |
| Vc T_CD | 52.95 | 63.63 | 10.68 | 57.80 | 95.60 | 0.554 6 | |
| BIT_CD | 51.22 | 63.81 | 12.59 | 56.82 | 95.59 | 0.555 5 | |
| YCCD | ChangeFormer | 53.07 | 52.80 | 0.27 | 52.94 | 94.54 | 0.500 4 |
| CLNet | 49.81 | 63.76 | 13.95 | 55.93 | 95.46 | 0.535 7 | |
| MFED-UNet++ | 55.51 | 65.41 | 9.90 | 60.06 | 95.73 | 0.578 2 | |
| GB-UNet++ | 57.31 | 65.75 | 8.44 | 61.24 | 95.77 | 0.585 4 | |
| Vc T_CD | 64.48 | 79.59 | 15.11 | 71.21 | 95.92 | 0.673 3 | |
| BIT_CD | 65.40 | 79.87 | 14.47 | 71.92 | 96.37 | 0.700 1 | |
| NJCD | ChangeFormer | 62.21 | 77.86 | 15.65 | 69.16 | 96.06 | 0.670 9 |
| CLNet | 64.74 | 78.53 | 13.79 | 70.97 | 96.24 | 0.689 8 | |
| MFED-UNet++ | 66.69 | 81.33 | 14.64 | 73.28 | 96.55 | 0.714 6 | |
| GB-UNet++ | 67.18 | 81.88 | 14.70 | 73.81 | 96.59 | 0.720 2 | |
| Vc T_CD | 65.47 | 72.39 | 6.92 | 68.79 | 91.74 | 0.658 6 | |
| BIT_CD | 54.18 | 66.66 | 12.48 | 59.78 | 89.85 | 0.540 5 | |
| GYCD | ChangeFormer | 57.51 | 65.98 | 8.47 | 61.46 | 89.96 | 0.557 2 |
| CLNet | 53.95 | 65.93 | 11.98 | 59.34 | 89.71 | 0.535 2 | |
| MFED-UNet++ | 68.66 | 71.60 | 2.94 | 70.09 | 91.85 | 0.653 8 | |
| GB-UNet++ | 68.85 | 72.53 | 3.68 | 70.62 | 92.04 | 0.661 1 |
表3
GDEM模块的嵌入效果分析"
| 数据集 | 基础网络 | GDEM | P/(%) | R/(%) | PRD/(%) | F1值/(%) | OA/(%) | Kappa系数 |
|---|---|---|---|---|---|---|---|---|
| BCDD | UNet++ | — | 65.91 | 63.89 | 2.02 | 64.89 | 97.66 | 0.636 1 |
| UNet++ | √ | 83.24 | 86.54 | 3.30 | 84.86 | 99.02 | 0.843 5 | |
| DSIFN | UNet++ | — | 70.57 | 56.71 | 13.86 | 62.89 | 85.47 | 0.539 9 |
| UNet++ | √ | 68.83 | 69.15 | 0.32 | 68.99 | 88.24 | 0.666 2 | |
| GZCD | UNet++ | — | 56.06 | 71.56 | 15.50 | 62.87 | 92.55 | 0.588 1 |
| UNet++ | √ | 75.41 | 86.12 | 10.71 | 80.41 | 95.87 | 0.781 2 | |
| YCCD | UNet++ | — | 50.77 | 51.93 | 1.16 | 51.35 | 94.43 | 0.483 9 |
| UNet++ | √ | 57.31 | 65.75 | 8.44 | 61.24 | 95.77 | 0.585 4 | |
| NJCD | UNet++ | — | 62.67 | 80.48 | 17.81 | 70.47 | 96.27 | 0.685 1 |
| UNet++ | √ | 67.18 | 81.88 | 14.70 | 73.81 | 96.59 | 0.720 2 | |
| GYCD | UNet++ | — | 57.89 | 66.99 | 9.10 | 62.11 | 90.16 | 0.564 9 |
| UNet++ | √ | 68.85 | 72.53 | 3.68 | 70.62 | 92.04 | 0.661 1 |
| [1] |
黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801. DOI: .
doi: 10.11947/j.AGCS.2020.20190236 |
|
HUANG Liang. Research on change detection technology in multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801. DOI: .
doi: 10.11947/j.AGCS.2020.20190236 |
|
| [2] |
宫金杞. 复杂城市场景的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2023, 52(7): 1233. DOI: .
doi: 10.11947/j.AGCS.2023.20210728 |
|
GONG Jinqi. Building change detection in high-resolution remote sensing images of complex urban scenes[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1233. DOI: .
doi: 10.11947/j.AGCS.2023.20210728 |
|
| [3] |
姜明, 张新长, 孙颖, 等. 全尺度特征聚合的高分辨率遥感影像变化检测网络[J]. 测绘学报, 2023, 52(10): 1738-1748. DOI: .
doi: 10.11947/j.AGCS.2023.20220505 |
|
JIANG Ming, ZHANG Xinchang, SUN Ying, et al. Full-scale feature aggregation network for high-resolution remote sensing image change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. DOI: .
doi: 10.11947/j.AGCS.2023.20220505 |
|
| [4] | WU Haoran, GENG Jie, JIANG Wen. Multidomain constrained translation network for change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 3381196. |
| [5] | 许淑淑. 基于对象的多源数据变化检测的方法[J]. 测绘通报, 2020(): 122-126. |
| XU Shushu. Research on object based multisource data change detection method[J]. Bulletin of Surveying and Mapping, 2020 (): 122-126. | |
| [6] | CHEN Dong, WANG Yafei, SHEN Zhenyu, et al. Long time-series mapping and change detection of coastal zone land use based on Google Earth Engine and multi-source data fusion[J]. Remote Sensing, 2022, 14(1): 1. |
| [7] | 施向丰, 帅梅琴, 申劲松. 基于多时相遥感图像智能变化检测方法的研究[J]. 测绘通报, 2012(9): 23-25. |
| SHI Xiangfeng, SHUAI Meiqin, SHEN Jinsong. Study on the intelligent change detection methods on the basis of multi-temporal remotely sensed images[J]. Bulletin of Surveying and Mapping, 2012(9): 23-25. | |
| [8] | 韩星, 韩玲, 李良志, 等. 基于深度学习的高分辨率遥感图像建筑物变化检测[J]. 激光与光电子学进展, 2022, 59(10): 1001003. |
| HAN Xing, HAN Ling, LI Liangzhi, et al. Building change detection in high-resolution remote-sensing images based on deep learning[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1001003. | |
| [9] | ZHANG Hongyan, LIN Manhui, YANG Guanyi, et al. ESCNet: an end-to-end superpixel-enhanced change detection network for very-high-resolution remote sensing images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(1): 28-42. |
| [10] | DONG Sijun, WANG Libo, DU Bo, et al. ChangeCLIP: remote sensing change detection with multimodal vision-language representation learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 208: 53-69. |
| [11] | ZHENG Zhi, WAN Yi, ZHANG Yongjun, et al. CLNet: cross-layer convolutional neural network for change detection in optical remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 247-267. |
| [12] | 孙雯婷, 施文灶, 王磊, 等. 改进UNet++遥感影像建筑物变化检测[J]. 电脑知识与技术, 2022, 18(25): 20-25. |
| SUN Wenting, SHI Wenzao, WANG Lei, et al. Improved UNet++ for building change detection in remote sensing images[J]. Computer Knowledge and Technology, 2022, 18(25): 20-25. | |
| [13] | SU Linzhi, XIE Qiaoyun, ZHAO Fengjun, et al. Change detection for multispectral images using modified semantic segmentation network[J]. Journal of Applied Remote Sensing, 2022, 16: 014518. |
| [14] | ZHANG Xiuwei, YUE Yuanzeng, GAO Wenxiang, et al. DifUnet++: a satellite images change detection network based on UNet++ and differential pyramid[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3049370. |
| [15] | FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3056416. |
| [16] | BAO Yintu, LIU Wei, GAO Ouyang, et al. E-Unet++: a semantic segmentation method for remote sensing images[C]//Proceedings of 2021 Advanced Information Management, Communicates, Electronic and Automation Control Conference. Chongqing: IEEE, 2021: 1858-1862. |
| [17] | LI Jian, LIU Kongyu, HU Yating, et al. Eres-UNet++: liver CT image segmentation based on high-efficiency channel attention and Res-UNet++[J]. Computers in Biology and Medicine, 2023, 158: 106501. |
| [18] | LI Zan, ZHANG Hong, LI Zhengzhen, et al. Residual-attention UNet++: a nested residual-attention U-Net for medical image segmentation[J]. Applied Sciences, 2022, 12(14): 7149. |
| [19] | 袁洲, 郭海涛, 卢俊, 等. 融合UNet++网络和注意力机制的高分辨率遥感影像变化检测算法[J]. 测绘科学技术学报, 2021, 38(2): 155-159. |
| YUAN Zhou, GUO Haitao, LU Jun, et al. Change detection algorithm for high-resolution remote sensing images by integrating UNet++ network and attention mechanism[J]. Journal of Geomatics Science and Technology, 2021, 38(2): 155-159. | |
| [20] | PENG Xueli, ZHONG Ruofei, LI Zhen, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7296-7307. |
| [21] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI: .
doi: 10.11947/j.AGCS.2023.20220202 |
|
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI: .
doi: 10.11947/j.AGCS.2023.20220202 |
|
| [22] | SUN Bangyong, LIU Qinsen, YUAN Nianzeng, et al. Spectral token guidance transformer for multisource images change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2559-2572. |
| [23] | FU Yanping, LIU Yun. Contrastive Transformer based domain adaptation for multi-source cross-domain sentiment classification[J]. Knowledge-Based Systems, 2022, 245: 108649. |
| [24] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
| [25] | YAN Tianyu, WAN Zifu, ZHANG Pingping. Fully Transformer network for change detection of remote sensing images[C]//Proceedings of 2022 Asian Conference on Computer Vision. Cham: Springer-Verlag, 2022: 75-92. |
| [26] | BANDARA W G C, PATEL V M. A Transformer-based siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 207-210. |
| [27] | JIANG Bo, WANG Zitian, WANG Xixi, et al. VcT: visual change Transformer for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
| [28] | YAN Tianyu, WAN Zifu, ZHANG Pingping, et al. TransY-Net: learning fully Transformer networks for change detection of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12. |
| [29] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with Transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
| [30] | MAO Zan, TONG Xinyu, LUO Ze, et al. MFATNet: multi-scale feature aggregation via transformer for remote sensing image change detection[J]. Remote Sensing, 2022, 14(21): 5379. |
| [31] | JAFFARI R, HASHMANI M A, REYES-ALDASORO C C. A novel focal phi loss for power line segmentation with auxiliary classifier U-Net[J]. Sensors, 2021, 21(8): 2803. |
| [32] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. |
| [33] | ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. |
| [34] | PENG Daifeng, BRUZZONE L, ZHANG Yongjun, et al. SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5891-5906. |
| [35] | PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382-1405. |
| [36] | MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 International Conference on 3D Vision. Stanford: IEEE, 2016: 565-571. |
| [37] | CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2023-12-10]. https://arxiv.org/abs/2102.04306v1. |
| [38] | LI Qingyang, ZHONG Ruofei, DU Xin, et al. TransUNetCD: a hybrid Transformer network for change detection in optical remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3169479. |
| [39] | TIAN Juan, PENG Daifeng, GUAN Haiyan, et al. RACDNet: resolution- and alignment-aware change detection network for optical remote sensing imagery[J]. Remote Sensing, 2022, 14(18): 4527. |
| [40] | RAZA A, HUO Hong, FANG Tao. EUNet-CD: efficient UNet++ for change detection of very high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3144304. |
| [1] | 罗卿莉, 李雪岩, 黄国满, 陈红辉, 薛铭龙, 李健. AOSN:α-最优网络模型的山区单通道SAR高程重建方法[J]. 测绘学报, 2025, 54(5): 888-898. |
| [2] | 涂伟, 池向沅, 赵天鸿, 杨剑, 朱世平, 陈德莉. 城市排水管网流量预测多视图时空图神经网络模型[J]. 测绘学报, 2025, 54(2): 334-344. |
| [3] | 张正华, 陈国良. 一种轻量且旋转不变的激光雷达位置识别网络[J]. 测绘学报, 2025, 54(1): 90-103. |
| [4] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [5] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
| [6] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [7] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
| [8] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
| [9] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
| [10] | 宁晓刚, 张翰超, 张瑞倩. 遥感影像高可信智能不变检测技术框架与方法实践[J]. 测绘学报, 2024, 53(6): 1098-1112. |
| [11] | 龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127. |
| [12] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
| [13] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
| [14] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
| [15] | 刘慧敏, 张陈为, 谌恺祺, 邓敏, 彭翀. 基于深度学习的城市PM2.5浓度时空分布预测及不确定性评估[J]. 测绘学报, 2024, 53(4): 750-760. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||