测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1318-1331.doi: 10.11947/j.AGCS.2025.20240490

• 地图学与地理信息 • 上一篇    下一篇

数据与认知双驱动的建筑物群制图综合结果与尺度一致性识别

孟妮娜1(), 李凤梅1, 周校东2   

  1. 1.长安大学地质工程与测绘学院,陕西 西安 710054
    2.北京卫星信息工程研究所,北京 100083
  • 收稿日期:2024-12-04 修回日期:2025-06-16 出版日期:2025-08-18 发布日期:2025-08-18
  • 作者简介:孟妮娜(1978—),女,博士,副教授,研究方向为地图制图、GIS深度学习。E-mail:mengnina@chd.edu.cn
  • 基金资助:
    国家自然科学基金(41501498);陕西省自然科学研究计划(2021JM-155)

Data and cognition dual-driven building group generalization results and scale consistency assessment

Nina MENG1(), Fengmei LI1, Xiaodong ZHOU2   

  1. 1.School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
    2.Beijing Institute of Satellite Information Engineering, Beijing 100083, China
  • Received:2024-12-04 Revised:2025-06-16 Online:2025-08-18 Published:2025-08-18
  • About author:MENG Nina (1978—), female, PhD, associate professor, majors in cartography and deep learning in GIS. E-mail: mengnina@chd.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41501498);Shaanxi Provincial Natural Science Research Program(2021JM-155)

摘要:

制图综合结果与综合尺度的一致性是制图综合结果质量评价的重要内容。评价过程涉及数量特征、结构特征、认知特征等多维度因素。传统方法在多种指标组合评价时存在量化指标难以确定的问题,且不易融合空间认知等领域知识。基于此,本文提出一种基于空域图卷积神经网络的建筑物群制图综合结果与尺度一致性的识别模型。该模型采用数据驱动与认知驱动相结合的策略,从整体结构、局部结构和个体特征3个空间认知层次度量建筑物群综合前后的特征变化,并利用多尺度综合成果数据进行训练。试验结果表明,本文模型能有效识别制图综合结果与目标尺度的一致性。

关键词: 建筑物群, 制图综合, 深度学习, 质量评价, 空间结构

Abstract:

The consistency between cartographic generalization results and their target scales constitutes a critical aspect of generalization quality evaluation. This process involves multidimensional factors including quantitative features, structural characteristics, and cognitive attributes. Traditional methods face difficulties in determining quantitative metrics when combining multiple evaluation indicators and encounter challenges in integrating domain knowledge such as spatial cognition. To address these limitations, this paper proposes a dilated graph convolutional network (DGCNN)-based recognition model for assessing scale consistency between building groups and their generalization results. The model adopts a dual data-driven and cognition-driven strategy to measure feature changes before and after generalization across three spatial-cognitive levels: global structure, local structure, and individual characteristics. It leverages multi-scale generalized datasets for training. Experimental results demonstrate that the proposed model effectively recognizes consistency between cartographic generalization outcomes and target scales.

Key words: building group, cartographic generalization, deep learning, quality assessment, spatial structure

中图分类号: