测绘学报 ›› 2023, Vol. 52 ›› Issue (6): 1000-1009.doi: 10.11947/j.AGCS.2023.20210173

• 地图学与地理信息 • 上一篇    下一篇

顾及轨迹密度分布异质性的道路交叉口提取方法

邓敏1, 罗斌1, 唐建波1, 姚志鹏1, 刘国平2, 温翔2, 胡润波2, 柴华2, 胡文柯1   

  1. 1. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    2. 滴滴出行科技有限公司, 北京 100094
  • 收稿日期:2021-04-07 修回日期:2023-04-18 发布日期:2023-07-08
  • 通讯作者: 唐建波 E-mail:jianbo.tang@csu.edu.cn
  • 作者简介:邓敏(1974-),男,博士,教授,研究方向为地理空间数据挖掘与模式发现。E-mail:dengmin@csu.edu.cn
  • 基金资助:
    国家自然科学基金(42271462;42171459;41901406);湖南省自然科学基金(2021JJ40727)

Extracting road intersections from vehicle trajectory data in the face of trace density disparity

DENG Min1, LUO Bin1, TANG Jianbo1, YAO Zhipeng1, LIU Guoping2, WEN Xiang2, HU Runbo2, CHAI Hua2, HU Wenke1   

  1. 1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;
    2. Didi Chuxing Technology Co., Ltd., Beijing 100094, China
  • Received:2021-04-07 Revised:2023-04-18 Published:2023-07-08
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42271462; 42171459; 41901406); The Natural Science Foundation of Hunan Province (No. 2021JJ40727)

摘要: 车辆轨迹大数据为道路网生成与更新、道路状态信息感知提供了新机遇,从轨迹数据中准确提取道路交叉口是基于车辆轨迹数据构建精细化道路网地图的关键步骤。当前已有学者根据轨迹点的转向、速度变化等特征,基于空间聚类提出了一些道路交叉口识别的经典方法,但由于轨迹数据密度分布的异质性、噪声干扰及最优聚类参数设置等问题,从不同采样频率、分布密度的轨迹数据中提取不同大小、形态的交叉口仍是一个挑战。为此,本文首先针对轨迹密度的空间分布异质性提出基于层次划分的轨迹栅格化策略,进而从视觉角度出发,提出一种基于“转换-分割-优化”全流程的道路交叉口层次提取方法。通过对不同采样频率的真实轨迹数据进行试验分析,验证了本文方法对低频轨迹数据中道路交叉口提取的准确度与有效性,识别结果优于现有代表性方法。

关键词: 道路交叉口, 轨迹数据, 特征提取, 轨迹栅格化, 深度学习

Abstract: Vehicle trajectory data provides a new opportunity for road network generation, road map update and traffic condition monitoring. Accurately extracting road intersections from trajectory data is a key step to build a refined road network map based on vehicle trajectory data. At present, several scholars have put forward some methods using spatial clustering to identify road intersections based on the detection of turning points and speed change positions in trajectories. However, due to the heterogeneity of track density distribution, noise interference and the issue of clustering parameters setting, the existing methods still have challenges to extract intersections of different sizes and shapes from low-quality trajectory data. Therefore, this paper puts forward a strategy of track rasterization considering the heterogeneity of track density distribution and a road intersection extraction method based on the trajectory transformation, intersection segmentation and location optimization process. Experiments on real-world trajectory data with different sampling frequencies are conducted to evaluate the performance of the proposed method, and results show the effectiveness and superiority of the proposed method over the existing state-of-the art methods.

Key words: road intersection, trajectory data, feature extraction, track rasterization, deep learning

中图分类号: